Latent Estimation and Prediction


The marginal item response model (13) does not include parameters for the latent values � EMBED Equation.2  ���; and hence, the estimation algorithm does not result in estimates of the latent values. ConQuest provides expected a-posteriori (EAP) ability estimates and maximum likelihood ability estimates of the latent quantities. The EAP ability estimate� of the latent quantity for case n is


	� EMBED "Equation" "Word Object3" \* mergeformat  ���		Equation(39)


Variance estimates for these predictions are estimated using


	� EMBED "Equation" "Word Object3" \* mergeformat  ���		Equation(40)


Maximum likelihood ability estimates of the latent quantities are produced by maximising (6) with respect to � EMBED "Equation" "Word Object6" \* mergeformat  ���, that is, solving the likelihood equations


	� EMBED "Equation" "Word Object5" \* mergeformat  ���Equation 	(41)


for each case, where � EMBED Equation.2  ��� is the vector of item parameter estimates. These equations are solved using a routine based on the Newton-Raphson method. Solving (41) will not produce finite estimates for cases that have responded in the lowest scoring category of each item or for cases that have responded in the highest scoring category of each item. To provide finite estimates for such cases, we add a small constant value to the scores of those cases who have responded in the lowest category, and we subtract a small constant from the scores of those cases who have responded in the highest category.�


Drawing Plausible Values


Plausible values are random draws from the marginal posterior (15) for each student. For details on the uses of plausible values, the reader is referred to Mislevy (1991) and Mislevy et al. (1992).


Unlike previously described methods for drawing plausible values (Beaton, 1987; Mislevy et al., 1992), ConQuest does not assume normality of the marginal posterior distributions. Recall from (15) that the marginal posterior is given by
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The ConQuest procedure begins drawing M vector-valued random deviates, � EMBED Equation.2  ���, from the multivariate normal distribution, � EMBED Equation.2  ���, for each case n.� These vectors are used to approximate the integral in the denominator of (42), using the Monte Carlo integration


	� EMBED "Equation" "Word Object2" \* mergeformat  ���	(Equation43)


At the same time, the values 


	� EMBED "Equation" "Word Object2" \* mergeformat  ���	(Equation44)


are calculated, so that we obtain the set of pairs � EMBED Equation.2  ���, which can be used as an approximation of the posterior density (42); and the probability that � EMBED Equation.2  ��� could be drawn from this density is given by


	� EMBED "Equation" "Word Object2" \* mergeformat  ���	(Equation45)


At this point, L uniformly distributed random numbers, � EMBED Equation.2  ���, are generated; and for each random draw, the vector, � EMBED Equation.2  ���, that satisfies the condition


	� EMBED "Equation" "Word Object2" \* mergeformat  ���	(Equation46)


is selected as a plausible vector.


Computing Thresholds


One important representation of the difficulty of items is given by the so-called Thurstonian thresholds. ConQuest computes Thurstonian thresholds for items, provided that the items do not contain unused categories and that the items do not use ordered partition scoring.


Suppose an item i has � EMBED Equation.2  ��� categories and the scores for those categories are 0, 1,..., � EMBED Equation.2  ���, then that item will have � EMBED Equation.2  ��� Thurstonian thresholds labelled � EMBED Equation.2  ���. The threshold � EMBED Equation.2  ���gives the location on the latent variable at which the probability of achieving a score of k or more is 0.5. The formal definition of � EMBED Equation.2  ���is the value of � EMBED Equation.2  ��� that satisfies the condition


	� EMBED "Equation" "Word Object5" \* mergeformat  ���	(Equation47)


ConQuest computes the thresholds to display in tables 5 and 6 of the show command using a simple binary-chop searching algorithm.


Separation Reliability


For the set of parameters associated with each term in a model, ConQuest computes a separation reliability index. This reliability is an index of the equality of the parameters. A test of significance is provided by an accompanying chi-squared value.


If � EMBED Equation.2  ��� is the set of parameters associated with a term in the model, � EMBED Equation.2  ��� are the estimated values of those parameters, � EMBED Equation.2  ��� are the estimated error variances for the parameter estimates, and � EMBED Equation.2  ��� is the mean of the estimated parameters, then the variance of the parameter estimates for the term is


	� EMBED Equation.2  ���


The separation reliability is then defined as


	� EMBED Equation.2  ���


and the chi-squared value as


	� EMBED Equation.2  ���


Fit Testing


ConQuest produces a fit statistic for every estimated parameter. The statistics that are used were derived by Wu (1997) and are based on those presented by Wright and Masters (1982). The Wright and Masters statistics were extended by Wu in two ways. First, they were extended for application to a more generalised model, providing the fit at the level of the parameter rather than at the level of the ‘item’. Second, the Wright and Masters statistics were developed for use with unconditional maximum likelihood estimates, and so they had to be extended for use with marginal maximum likelihood estimates.


If we let � EMBED Equation.2  ���be the p-th column of the design matrix A, the Wu fit statistic is based upon the standardised residual


	� EMBED Equation.2  ���


where � EMBED Equation.2  ��� is the contribution of person n to the sufficient statistic for parameter p, and � EMBED Equation.2  ��� and � EMBED Equation.2  ��� are, respectively, the conditional expectation and the variance of � EMBED Equation.2  ���.


�
To construct an unweighted fit statistic, the square of this residual is averaged over the cases and then integrated over posterior ability distributions so that we obtain


	� EMBED Equation.2  ���Equation 	(48)


For the weighted fit, a weighted average of the squared residuals is used as follows:


	� EMBED Equation.2  ���	Equation 	(49)


In ConQuest, the Monte Carlo method is used to approximate the integrals in equations (48) and (49).� Wu (1997) has shown that the statistics produced by (48) and (49) have approximate scaled chi-squared distributions. These statistics are transformed to approximate normal deviates using the Wilson-Hilferty transformations
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and


	� EMBED Equation.2  ���


where r is the number of draws used in the Monte Carlo approximation of (48) and


	� EMBED Equation.2  ���


The derivation and justification for these transformations is given in Wu (1997).


Design Matrices


The two matrices, A and B, that are used in (6) define the specific form of the item response model that is to be fit. We call A the design matrix and B the scoring matrix. Detailed descriptions of how specific forms of these matrices result in various Rasch models is provided in Adams and Wilson (1996) and Adams, Wilson and Wang (1997).


Design Matrices and Different Rasch Models


The number of rows in both the scoring and design matrices is equal to the total number of response categories for all generalised items. For example, to fit the simple logistic model to data collected from a set of 10 dichotomously scored items will require scoring and design matrices with 2 rows for each item, a total of 20. The design matrix will have one column for each item parameter, and the scoring matrix will have one column for each dimension.


Figure 12-1 illustrates the design and scoring matrices for this example. The 20 rows in these matrices are sequenced so that the first row refers to the first category of item 1, the second row refers to the second category of item 1, the third row refers to the first category of item 2, the fourth row refers to the second category of item 2, and so on.


� EMBED Word.Picture.6  ���


Figure 12-1	Design and Scoring Matrices for a Simple Logistic Model Fitted to Data Collected with 10 Dichotomous Items


�
In Figure 12-1, you will note that all of the rows that correspond to the first category in each item contain only zeros. This is because we routinely use the first response category in an item as the reference category. Adams and Wilson (1996) show how the substitution of these particular design and score matrices into (3) will result in the simple logistic model.�


For polytomous data, a model such as Masters’ (1982) partial credit model can be used. Suppose, for example, that we wish to fit a partial credit model to three items, each with four response categories. This can be achieved with the design and score matrices shown in Figure 12-2.
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Figure 12-2	Design and Scoring Matrices for a Partial Credit Model Fitted to Data Collected with Three Polytomous Items


The models in both Figure 12-1 and Figure 12-2 are unidimensional, that is, they assume that all of the items are indicators for a single latent variable. Both can easily be altered to become multidimensional models through the respecification of the scoring matrices. In Figure 12-3, we show two scoring matrices that, if used as alternatives to the scoring matrices in Figures 12�1 and 12-2, would result in two- and three-dimensional models respectively.
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Figure 12-3	Multidimensional Scoring Matrices for Dichotomous and Polytomous Data


As a final example, Figure 12-4 shows the design and scoring matrices that can be used for multifaceted data. Consider an example of a rating context in which students’ work is rated against two criteria by two raters and that each rating uses a three-point scale, scored 0, 1, 2. To fit the generalised Rasch model to such data, the combination of the two criteria and the two raters are regarded as four generalised items. Assuming the generalised items are defined in the sequence criterion 1, rater 1; criterion 1, rater 2; criterion 2, rater 1; criterion 2, rater 2; then the matrices in Figure 12-4 fit a two-faceted Rasch model that posits a unique rating structure for each generalised item.


The form of the parameterisation that has been used in Figure 12-4 follows that of Andrich (1978). Ten parameters are used. The first column provides a criterion difficulty parameter, the second provides a rater severity parameter, and columns three to ten are the step parameters. 


Even though the data are collected using two criteria, the item response model includes a single criterion difficulty parameter: the design matrix has set the difficulty of the second criterion to be the negative of the difficulty of the first criterion.
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Figure 12-4	Design and Score Matrices for a Multifaceted Polytomous Model


This kind of constraint is often applied to identify the item response model and is equivalent to setting the mean of the criteria parameters to zero.� Similarly, the model in Figure 12-4 uses a single rater severity parameter, with the severity of the second rater set to be the negative of the severity of the first rater.�


The structure of these design and score matrices can, perhaps, be best understood by noting from (5) that 
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�
The Structure of ConQuest Design Matrices


ConQuest can import user-defined design matrices, or it can generate its own design matrices by drawing upon the command code that is used to specify a model. Chapter 11 provides two sample analyses that use user-defined design matrices. For many models, however, ConQuest command code can be used so that appropriate design matrices are automatically generated.


The score matrix cannot be imported, but the ConQuest score command can be used to generate score matrices. The relationship between the score command and the score matrix is direct and need not be described here.


The design matrix is generated from the ConQuest model statement, the syntax of which is described in the command reference (Chapter 13). The full details of how the design matrix is generated are beyond the scope of this manual; however, it is useful to note how the basic structure of the design matrix is determined.


In the model statement, four types of terms can used: terms that involve a single variable, terms that involve the product of two or more variables, the term step, and terms that involve the product of step and other variables.


ConQuest must first determine the number of rows in the score and design matrices. It does so by noting all of the different variables used in the model statement and then examining the data to identify all possible combinations of the levels of the variables. Each possible combination is called a generalised item. Each valid response category for a generalised item constitutes one row in the score matrix and one row in the design matrix. The valid response categories are all categories between the lowest and highest category found in the data for the generalised item.�


A set of parameters (columns of the design matrix) is then generated for each term in the model. If the term involves a single variable, then the number of parameters generated is one less than the number of levels in that variable.� If the term involves the product of two or more variables, then the number of parameters generated is � EMBED Equation.2  ���, where � EMBED Equation.2  ��� is the number of levels in the i-th variable used in the term. If the term is step, then the number of parameters generated is two less than the maximum of the number of categories in all of the generalised items. If the term involves step and other variables, the number of parameters generated is � EMBED Equation.2  ���, where the summation is over all of the combinations of levels of the variables that are in the term (of course, excluding step) and � EMBED Equation.2  ��� is the maximum of the number of categories in those generalised items that include the t-th combination of variables.


ConQuest then proceeds to construct a design matrix that is based upon the Andrich (1978) parameterisation of polytomous Rasch models. If an imported matrix is used as a replacement for the generated matrix, then each row of the imported matrix must refer to the same category and generalised item as those to which the corresponding row of the generated matrix refers. No constraint is placed on the number of columns (parameters) in the imported matrix. 


Traditional Item Statistics


The itanal command displays a variety of traditional item statistics, most of which are self-explanatory. To assist in their discussion, however, it is important to define the ConQuest concept of raw score. The raw score for a case is the sum of the scores achieved by a case divided by the maximum possible score that the case could have achieved. More formally, if we let � EMBED Equation.2  ���be the set of generalised items to which case n responded, then the raw score � EMBED Equation.2  ��� for case n is defined as
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where � EMBED Equation.2  ���is the sum across the dimensions of the score that has been assigned to category xni of item i. 


Discrimination


The discrimination index that is printed for each item (see, for example, Figure 5-6) is the product moment correlation between the case scores on this item, � EMBED Equation.2  ���, and the corresponding case raw scores, sn. Only those cases who responded to the item are included in the calculation.


Point Biserial


For each response category of an item, a point-biserial correlation and t-statistic are computed. To compute the point biserial for category k on item i, a dummy variable yikn is constructed so that 


	� EMBED Equation.2  ���.	(Equation52)


The point biserial is then the correlation between the set of values yikn and the corresponding case raw scores sn. Only those cases who responded to the item are included in the calculation.


If the data set is complete and the items are dichotomously scored, then the discrimination index and the point biserial for the category that is scored 1 will be equal. If the data set is incomplete, this does not hold.


The t-statistic provides a significance test for the point biserial. The degrees of freedom for the statistic are two less than the total number of students who responded to the item. Since this will normally be greater than 30, the t-statistic can be treated as a normal deviate.


Summary Statistics


The mean, variance, skewness and kurtosis statistics (see, for example, Figure 3-9) that are reported at the end of an itanal run are scaled to a metric that assumes that every case responded once to every item. The Cronbach’s alpha coefficient of reliability (which is equal to KR-20 when all items are dichotomously scored) and the standard error of measurement also assume that every case responded once to every item. Further, they are not reported if more than 10% of the response data is missing (compare, for example, Figure 3-9 with Figure 5-7).


�	The current version of ConQuest uses the Monte Carlo method only when producing EAP ability estimates and variances for those ability estimates.


�	The value of this constant can be set with the set command argument  zero/perfect=r.


�	The value M should be large. The default value in ConQuest is 2000. The value of the ConQuest set command argument p_nodes=n controls the value of M.


�	In ConQuest, the number of nodes used to approximate the integrals in (48) and (49) is governed by the set command argument f_nodes=n, and the number of random draws used by the Monte Carlo integration method is governed by fitdraws=n. The default value of f_nodes is 2000, and the default value of fitdraws is 1.


�	Note, however, that a model using the matrices in Figure 12-1 will only be identified if the mean of the latent variable, (, is constrained to be zero.


�	As an alternative to setting the mean of a set of parameters to zero, it may be possible to identify the model by setting the mean of the latent variable to zero. This is what would have been required to identify the models in Figures 12-1 and 12-2.


�	In the multifaceted case, setting the mean of the latent variable to zero removes the requirement of setting the mean of one set of parameters to zero only.


�	The lowest and highest categories are determined as follows. ConQuest identifies all valid codes (after recoding) and then sorts those codes (using an alphanumeric sort) to find the lowest and highest category.


�	When the set command argument constraints=cases is used and the term is the first term, the number of parameters generated is equal to the number of categories of the variable in the term.
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