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The Generalised Rasch Model

The model fitted by ConQuest is a generalised multidimensional Rasch item response model coupled with a multivariate regression model. We call these two components of the model the item response model and the population model respectively. As we have illustrated in previous chapters, the model allows ConQuest to be used for two important types of analyses.

First, the general specification of the item response model allows us to use one model to fit a wide variety of Rasch models. In the unidimensional case, this includes the simple logistic model (Wright and Panchapakesan, 1969), the linear logistic model (Fischer, 1973), the rating scale and partial credit models (Andrich, 1978; Masters, 1982; Glas, 1989), the ordered partition model (Wilson, 1992), and multifaceted models (Linacre, [1989] 1994). Furthermore, multidi�mensional dichotomous and polytomous response models, such as Kelderman’s LOGIMO model (Kelderman and Rijkes, 1994), Rasch’s (1961) multidimensional model, and the models of Whitely (1980), Andersen (1985) and Embretson (1991), can also be shown to be special cases of the generalised multidimensional Rasch model.

Second, the combination of the item response and population models allows ConQuest to be used to undertake latent regression. The term latent regression refers to the direct estimation of regression models from item response data. To illustrate the use of latent regression, consider the following typical situation. We have two groups of students, group A and group B, and we are interested in estimating the difference in the mean achievement of the two groups. If we follow standard practice, we will administer a common test to the students and then use this test to produce achievement scores for all of the students. We could then follow a standard procedure, such as regression (which, in this simple case, becomes identical to a t-test), to examine the difference in the means. Depending upon the method that is used to construct the achievement scores, this approach can result in misleading inferences about the differences in the means. Using the latent regression methods described by Adams, Wilson and Wu (1997), ConQuest avoids such problems by directly estimating the difference in the achievement of the groups from the response data.

The Item Response Model

The item response model fitted by ConQuest is the multidimensional random coefficients multinomial logit model that was described by Adams, Wilson and Wang (1997). For ease of explanation, we will first describe the unidimensional form of the model.

The Unidimensional Random Coefficients Multinomial Logit Model

Assume that I items are indexed i=1,...,I, with each item admitting Ki + 1 response alternatives k=0,1,...,Ki. Use the vector-valued random variable � EMBED "Equation" "Word Object5" \* mergeformat  ��� where

	� EMBED "Equation" "Word Object4" \* mergeformat  ���	Equation (� SEQ Equation \* ARABIC �1�)

to indicate the Ki + 1 possible responses to item i.

A response in category zero is denoted by a vector of zeroes. This effectively makes the zero category a reference category and is necessary for model identification. The choice of this as the reference category is arbitrary and does not affect the generality of the model. We can also collect the Xi together into the single vector � EMBED "Equation" "Word Object6" \* mergeformat  ���, which we call the response vector (or pattern). Particular instances of each of these random variables are indicated by their lower case equivalents: x, xi and xik.

The items are modelled through a vector � EMBED "Equation" "Word Object7" \* mergeformat  ��� of P parameters. Linear combinations of these are used in the response probability model to describe the empirical characteristics of the response categories of each item. These linear combinations are defined by design vectors � EMBED "Equation" "Word Object8" \* mergeformat  ���, each of length P, which can be collected to form a design matrix � EMBED "Equation" "Word Object9" \* mergeformat  ���. Adopting a very general approach to the definition of items, in conjunction with the imposition of a linear model on the item parameters, allows us to write a general model that includes the wide class of existing Rasch models mentioned above and to develop new types of Rasch models (for example, the item bundles models of Wilson and Adams (1995)).

An additional feature of the model is the introduction of a scoring function that allows the specification of the score or ‘performance level’ that is assigned to each possible response to each item. To do this, we introduce the notion of a response score bij, which gives the performance level of an observed response in category j of item i. The bij can be collected in a vector as � EMBED "Equation" "Word Object10" \* mergeformat  ���. (By definition, the score for a response in the zero category is zero, but other responses may also be scored zero.)

In the majority of Rasch model formulations, there has been a one-to-one match between the category to which a response belongs and the score that is allocated to the response. In the simple logistic model, for example, it has been standard practice to use the labels 0 and 1 to indicate both the categories of performance and the scores. A similar practice has been followed with the rating scale and partial credit models, where each different possible response is seen as indicating a different level of performance, so that the category indicators 0, 1, 2 etc. that are used serve both as scores and labels. The use of b as a scoring function allows a more flexible relationship between the qualitative aspects of a response and the level of performance that it reflects. Examples of where this is applicable are given in Kelderman and Rijkes (1994) and Wilson (1992).

�
Letting � EMBED Equation.2  ��� be the latent variable, the item response probability model is written as

	� EMBED "Equation" "Word Object5" \* mergeformat  ���	Equation (� SEQ Equation \* ARABIC �2�)

and a response vector probability model as

	� EMBED "Equation" "Word Object6" \* mergeformat  ���	Equation (� SEQ Equation \* ARABIC �3�)

with	� EMBED "Equation" "Word Object7" \* mergeformat  ���,	Equation (� SEQ Equation \* ARABIC �4�)

where ( is the set of all possible response vectors.

The Multidimensional Random Coefficients Multinomial Logit Model

The multidimensional form of the model is a straightforward extension of the unidimensional model. It assumes that a set of D latent traits underlies the individuals’ responses. The D latent traits define a D�dimensional latent space, and the individuals’ positions in the D-dimensional latent space are represented by the vector � EMBED "Equation" "Word Object1" \* mergeformat  ���. The scoring function of response category k in item i now corresponds to a D-by-1-column vector rather than to a scalar as in the unidimensional model. A response in category k in dimension d of item i is scored bikd. The scores across D dimensions can be collected into a column vector � EMBED "Equation" "Word Object1" \* mergeformat  ���, then collected into the scoring submatrix for item i, � EMBED "Equation" "Word Object1" \* mergeformat  ���, and then collected into a scoring matrix � EMBED "Equation" "Word Object1" \* mergeformat  ��� for the whole test. If the item parameter vector, (, and the design matrix, A, are defined as they were in the unidimensional model, the probability of a response in category k of item i is modelled as

	� EMBED "Equation" "Word Object5" \* mergeformat  ���	Equation (� SEQ Equation \* ARABIC �5�)

And for a response vector we have

	� EMBED "Equation" "Word Object6" \* mergeformat  ���	Equation (� SEQ Equation \* ARABIC �6�)

with	� EMBED "Equation" "Word Object7" \* mergeformat  ���	Equation (� SEQ Equation \* ARABIC �7�)

The difference between the unidimensional model and the multidimensional model is that the ability parameter is a scalar, � EMBED Equation.2  ���, in the former, and a D-by-1-column vector, � EMBED Equation.2  ���, in the latter. Likewise, the scoring function of response k to item i is a scalar, bik, in the former, whereas it is a D-by-1-column vector, bik, in the latter.

For the purposes of the identification of (6), certain constraints must be placed on the design matrices A and B. Volodin and Adams (1995) show that the following are necessary and sufficient conditions for the identification of (6).

Proposition One:	If D is the number of latent dimensions, P is the length of the parameter vector, (, � EMBED "Equation" "Word Object2" \* mergeformat  ��� is the number of response categories for item i, and � EMBED "Equation" "Word Object1" \* mergeformat  ���, then model (6) if applied to the set of items I can only be identified if � EMBED "Equation" "Word Object3" \* mergeformat  ���.

Proposition Two:	If D is the number of latent dimensions and P is the length of the parameter vector, (, then model (6) can only be identified if � EMBED "Equation" \* mergeformat  ���, � EMBED "Equation" \* mergeformat  ��� and � EMBED "Equation" \* mergeformat  ���.

Proposition Three:	If D is the number of latent dimensions, P is the length of the parameter vector, (, � EMBED "Equation" "Word Object2" \* mergeformat  ��� is the number of response categories for item i, and � EMBED "Equation" "Word Object1" \* mergeformat  ���, then model (6) if applied to the set of items I can only be identified if and only if � EMBED "Equation" \* mergeformat  ���.

The Population Model

The item response model is a conditional model, in the sense that it describes the process of generating item responses conditional on the latent variable,� EMBED Equation.2  ���. The complete definition of the model, therefore, requires the specification of a density, � EMBED "Equation" "Word Object2" \* mergeformat  ���, for the latent variable, � EMBED Equation.2  ���. We use a to symbolise a set of parameters that characterise the distribution of � EMBED Equation.2  ���. The most common practice when specifying unidimensional marginal item response models is to assume that the students have been sampled from a normal population with mean m and variance s2. That is:

	� EMBED "Equation" "Word Object2" \* mergeformat  ���	Equation (� SEQ Equation \* ARABIC �8�)

or equivalently

	� EMBED "Equation" "Word Object2" \* mergeformat  ���	Equation(� SEQ Equation \* ARABIC �9�)

where � EMBED Equation.2  ���.

Adams, Wilson and Wu (1997) discuss how a natural extension of (8) is to replace the mean, m, with the regression model � EMBED "Equation" "Word Object3" \* mergeformat  ���, where Yn is a vector of u fixed and known values for student n and � EMBED Equation.2  ��� is the corresponding vector of regression coefficients. For example, Yn could be constituted of student variables, such as gender, socio-economic status, or major. Then the population model for student n becomes

	� EMBED "Equation" "Word Object4" \* mergeformat  ���,	Equation (� SEQ Equation \* ARABIC �10�)

where we assume that the En are independently and identically normally distributed with mean zero and variance s2 so that (10) is equivalent to

	� EMBED "Equation" "Word Object3" \* mergeformat  ���	Equation (� SEQ Equation \* ARABIC �11�)

a normal distribution with mean � EMBED Equation.2  ��� and variance s2. If (11) is used as the population model, then the parameters to be estimated are � EMBED Equation.2  ���, s2 and x.

The model takes the generalisation one step further by applying it to the vector-valued � EMBED Equation.2  ��� rather than the scalar-valued � EMBED Equation.2  ���, resulting in the multivariate population model

	� EMBED "Equation" "Word Object3" \* mergeformat  ���	(Equation � SEQ Equation \* ARABIC �12�)

where ( is a u-by-d matrix of regression coefficients, ( is a d-by-d variance-covariance matrix and Wn is a u-by-1 vector of fixed variables. If (12) is used as the population model, then the parameters to be estimated are (, ( and x.

Estimation

ConQuest uses maximum likelihood methods to provide estimates of (, ( and x. Combining the conditional item response model (6) and the population model (12), we obtain the unconditional, or marginal, item response model

	� EMBED "Equation" "Word Object1" \* mergeformat  ��� ,	(Equation � SEQ Equation \* ARABIC �13�)

and it follows that the likelihood is

	� EMBED "Equation" "Word Object3" \* mergeformat  ���,	(Equation � SEQ Equation \* ARABIC �14�)

where N is the total number of sampled students.

Differentiating with respect to each of the parameters and defining the marginal posterior as

	� EMBED "Equation" "Word Object2" \* mergeformat  ���	(Equation � SEQ Equation \* ARABIC �15�)

provides the following system of likelihood equations:

	� EMBED "Equation" "Word Object3" \* mergeformat  ���	Equation (� SEQ Equation \* ARABIC �16�)

	� EMBED "Equation" "Word Object3" \* mergeformat  ���	(Equation � SEQ Equation \* ARABIC �17�)

and

	� EMBED "Equation" "Word Object3" \* mergeformat  ���	(Equation � SEQ Equation \* ARABIC �18�)

where

	� EMBED "Equation" "Word Object3" \* mergeformat  ���	Equation (� SEQ Equation \* ARABIC �19�)

and

	� EMBED "Equation" "Word Object3" \* mergeformat  ���	(Equation (� SEQ Equation \* ARABIC �20�)

The system of equations defined by (16), (17) and (18) is solved using an EM algorithm (Dempster, Laird and Rubin, 1977) following the approach of Bock and Aitken (1981).

Quadrature and Monte Carlo Approximations

The integrals in equations (16), (17) and (18) are approximated numerically using either quadrature or Monte Carlo methods. In each case, we define � EMBED "Equation" "Word Object1" \* mergeformat  ���, q=1,...,Q and a set of Q D-dimensional vectors (which we call nodes); and for each node we define a corresponding weight � EMBED "Equation" "Word Object1" \* mergeformat  ���. The marginal item response probability (13) is then approximated using

	� EMBED "Equation" "Word Object1" \* mergeformat  ���		Equation(� SEQ Equation \* ARABIC �21�)

and the marginal posterior (15) is approximated using

	� EMBED "Equation" "Word Object2" \* mergeformat  ���		Equation(� SEQ Equation \* ARABIC �22�)

for q=1,...,Q.

The EM algorithm then proceeds as follows:

Step 1.	Prepare a set of nodes and weights depending upon � EMBED Equation.2  ��� and � EMBED Equation.2  ���, which are the estimates of � EMBED Equation.2  ��� and � EMBED Equation.2  ��� at iteration t.

�
Step 2.	Calculate the discrete approximation of the marginal posterior density of (n, given xn at iteration t, using 

	� EMBED "Equation" "Word Object2" \* mergeformat  ���		Equation(� SEQ Equation \* ARABIC �23�)

	where � EMBED Equation.2  ���, � EMBED Equation.2  ��� and � EMBED Equation.2  ��� are estimates of � EMBED Equation.2  ���, � EMBED Equation.2  ��� and � EMBED Equation.2  ��� at iteration t.

Step 3.	Use the Newton-Raphson method to solve the following to produce estimates of � EMBED Equation.2  ���

	� EMBED "Equation" "Word Object3" \* mergeformat  ���		Equation(� SEQ Equation \* ARABIC �24�)

Step 4.	Estimate � EMBED Equation.2  ��� and � EMBED Equation.2  ���, using

	� EMBED "Equation" "Word Object3" \* mergeformat  ���		Equation(� SEQ Equation \* ARABIC �25�)

	and

	� EMBED "Equation" "Word Object3" \* mergeformat  ���		Equation(� SEQ Equation \* ARABIC �26�)

	where

	� EMBED "Equation" "Word Object3" \* mergeformat  ���		Equation(� SEQ Equation \* ARABIC �27�)

Step 5.	Return to step 1.

The difference between the quadrature and Monte Carlo methods lies in the way the nodes and weights are prepared. For the quadrature case, we begin by choosing a fixed set of Q points, � EMBED "Equation" "Word Object1" \* mergeformat  ���, for each latent dimension d and then define a set of � EMBED Equation.2  ��� nodes that are indexed � EMBED "Equation" "Word Object2" \* mergeformat  ��� and are given by the Cartesian coordinates

	� EMBED "Equation" "Word Object1" \* mergeformat  ���.

The weights are then chosen to approximate the continuous multivariate latent population density (12). That is,

	� EMBED "Equation" "Word Object3" \* mergeformat  ���		Equation(� SEQ Equation \* ARABIC �28�)

where K is a scaling factor to ensure that the sum of the weights is 1.

In the Monte Carlo case, the nodes are drawn at random from the standard multivariate normal distribution; and at each iteration, the nodes are rotated, using standard methods, so that they become random draws from a multivariate normal distribution with mean � EMBED "Equation" "Word Object3" \* mergeformat  ��� and variance (. In the Monte Carlo case, the weight for all nodes is 1/Q.

For further on the quadrature approach to estimating the model, see Adams, Wilson and Wang (1997); and for further on the Monte Carlo estimation method, see Volodin and Adams (1995).

Estimating Standard Errors

Asymptotic standard errors for the parameter estimates are estimated using the observed Fisher’s information. For the unidimensional case, a derivation of the formulae for the observed information is provided in Adams, Wilson and Wu (1997).�

If the observed information matrix is written as

	� EMBED Equation.2  ���,		Equation(� SEQ Equation \* ARABIC �29�)

Adams, Wilson and Wu (1997) show that, for the unidimensional model, the components of the matrix are

� EMBED "Equation" "Word Object3" \* mergeformat  ���	 	Equation(� SEQ Equation \* ARABIC �30�)	

� EMBED "Equation" "Word Object3" \* mergeformat  ���			Equation(� SEQ Equation \* ARABIC �31�)

� EMBED "Equation" "Word Object9" \* mergeformat  ���		Equation(� SEQ Equation \* ARABIC �32�)

� EMBED "Equation" "Word Object1" \* mergeformat  ���		Equation(� SEQ Equation \* ARABIC �33�)

� EMBED "Equation" "Word Object2" \* mergeformat  ���		Equation(� SEQ Equation \* ARABIC �34�)

and

� EMBED "Equation" "Word Object2" \* mergeformat  ���		Equation(� SEQ Equation \* ARABIC �35�)

The estimation of asymptotic standard errors using the observed information can be very time-consuming. The matrix that is computed is of dimension p+r+2, where p is the number of item parameters and r is the number of regression variables; and the computation of each element requires integration over the posterior distribution of each case. The time taken is therefore quadratic in the number of parameters and linear in the number of cases and nodes. Because the estimation of these errors can take considerable time (and memory), ConQuest’s default procedure is to use the following approximations for the error variances.

	� EMBED Equation.2  ���		Equation(� SEQ Equation \* ARABIC �36�)

	� EMBED Equation.2  ���		Equation(� SEQ Equation \* ARABIC �37�)

		� EMBED Equation.2  ���		Equation(� SEQ Equation \* ARABIC �38�)

These approximations ignore all of the covariances in the parameter estimates. The approximations of the item parameters (36) will generally underestimate the sampling error, particularly for parameters associated with facets that have few levels for the step parameters in multicategory items. The accuracy of (37) and (38) depends upon the magnitude of the measurement error as it is reflected in the variances of the individual’s posterior distributions.

The estimate statement option stderr=full uses the full observed information matrix (29) to estimate the standard errors, while the option stderrr=quick uses equations (36) through (38).

�	The current version of ConQuest does not compute standard errors for the multidimensional form of the model.
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