Chapter 13: ConQuest Commands

Section Four: ConQuest Command Reference

Section Four

ConQuest Command Reference

This section of the manual contains general information about the syntax of ConQuest command statements followed by an alphabetical reference of ConQuest commands.

Chapter Seventeen
ConQuest Commands

All ConQuest commands can be accessed through a command line interface that is described in this chapter. In addition the majority of commands with their options can be accessed through the graphical user interface. In this chapter the syntax for the command line interface is described, the graphical user interface accessibility of each of the commands is described.

Command Statement Syntax

A ConQuest statement can consist of between one and four components: a command, arguments, options, and a redirection. The general syntax of a ConQuest statement is as follows:

Command Arguments ! Options >> Redirection;

or

Command Arguments ! Options << Redirection;

The first text in a statement must be a command. The command is followed by an argument with a space used as a separator. Some commands have optional arguments; others require an argument. An exclamation mark (!) separates arguments from options; or if there is no argument, the exclamation mark can separate a command from an option. The characters << or >> then separate a file redirection from the preceding elements of the statement.

ConQuest syntax has the following additional features:

(1) A statement must be terminated with a semi-colon (;). The semi-colon, not the return or new line character, is the separator between statements.

(2) You can type more than one statement on a line. However, pressing the Enter key after each statement will make the statements easier to read.

(3) A statement can be 1023 characters in length and can cover any number of lines on the screen or in a command file. No continuation character is required.

(4) Comments are placed between /* and */. They can appear anywhere in a command file, and their length is unlimited. Comments cannot be nested inside a statement or inside another comment.

(5) The command language is not case sensitive.

(6) The order in which command statements can be entered into ConQuest is not fixed. There are, however, logical constraints on the ordering. For example, show statements cannot precede the estimate statement, which in turn cannot precede the model, format or datafile statements, all three of which must be provided before ConQuest can analyse a data set.

(7) Any file that you want ConQuest to read must be an ASCII text file (with the exception of ConQuest system files). If you create a command file, a data file or a design matrix file with a word processor, remember to save the file as text only. Do not use ‘typesetter’, or ‘curly’, double quotation marks (“ ”), as these are not the same ASCII characters as ‘straight’ quotation marks (" ").

(8) User-provided variable names must begin with an alphabetic character and must be made up of alphabetic characters or digits. Spaces are not allowed in variable names.

(9) All commands, as well as arguments and options that consist of ConQuest reserved words, can be abbreviated to their shortest unambiguous root. For example, the following are all valid:

caseweight, caseweigh, caseweig, casewei, casewe, casew,

 case, cas, ca

codes, code, cod, co

converge=, converg=, conver=, conve=, conv=, con=, co=

datafile, datafil, datafi, dataf, data, dat, da, d

estimate, estimat, estima, estim, esti, est, es

export, expor, expo, exp, ex

Example Statements

codes 0,1,2;

codes is the command, and the argument is 0,1,2.

format responses 11-20!rater(2),essay(5);

format is the command, responses 11-20 is the argument, and rater(2) and essay(5) are the options.
show !cases=eap >> file.out;

show is the command, there is no argument, cases=eap is the option, and >> file.out is the redirection.

Using ConQuest Commands

ConQuest is available with both a graphical user interface (GUI) and a simple command line, or console, interface. The ConQuest command statement syntax used by the GUI and the console versions is identical. The console version of the program is available for all of the ConQuest platforms. The GUI version is available for all Windows platforms. In general, the console version runs faster than the GUI version, but the GUI version is more user friendly. GUI version and console version system files are fully compatible.

Entering command statements using the two interfaces is described below.

Entering Statements via the Console Interface

When the console version of ConQuest is started, the less than character (<) is displayed. This is the ConQuest prompt. When the ConQuest prompt is displayed, any appropriate ConQuest statement can be entered.

As with any command line interface, ConQuest attempts to execute the statement when you press the Enter key. If you have not yet entered a semi-colon (;) to indicate the end of the statement, the ConQuest prompt changes to a plus sign (+) to indicate that the statement is continuing on a new line.

On many occasions, a file containing a set of ConQuest statements (a ConQuest command file) will be prepared with a text editor, and you will want ConQuest to run the set of statements that are in the file. If we suppose the file is called myfile.cmd, then the statements in the file can be executed in two ways.

In the first method, start ConQuest (see the Installation Instructions if you don’t know how to start ConQuest) and then type the statement

submit myfile.cqc;

A second method, which will work on operating systems that allow ConQuest to be launched from a command line interface, is to provide the control file as a command line argument. That is, launch ConQuest using

conquest myfile.cqc;

With either method, after you press the Enter key, ConQuest will proceed to execute each statement in the file. As statements are executed, they will be echoed on the screen. If you have requested displays of the analysis results and have not redirected them to a file, they will be displayed on the screen.

Entering Commands via the GUI Interface

This topic is discussed in detail in Chapter 2. Once you have launched the GUI interface, you can type command statements or open a command file in the GUI input window and then select Run(Run. In addition, the GUI has menu selections that will build and execute ConQuest command statements. Access to the commands with the GUI is described in the following for each command.

Commands

The remainder of this chapter describes the following commands, beginning on the page indicated. The arguments or options that are listed below the commands are reserved words when used with that command. User-provided arguments or options, such as file names or code lists, are not shown.

caseweight
155
codes

156
datafile
158
estimate
159

options:

converge=

fit=

iterations=

maxnode=

method=

minnode=

nodes=

plausible=

stderr=

storage=

export
163

arguments:

covariance

designmatrix

logfile

parameters

reg_coefficients

format
165

arguments:

pid

responses

generate
169

options:

abilitydist=

itemdist=

maxscore=

nitems=

npersons=

import
171

arguments:

anchor_covariance

anchor_parameters

anchor_reg_coefficients

designmatrix

init_covariance

init_parameters

init_reg_coefficients

itanal
175
key

176
labels
179
model

181
quit

185
recode
186
regression
188
reset

190
score

191
set

194

arguments:

constraints=

f_nodes=

fitdraws=

innerloops=

iterlimit=

key_default=

missing=

mle_criteria=

n_plausible=

p_nodes=

seed=

update=

warnings=

zero/perfect=

show

198

arguments:

cases

parameters

options:

estimates=

labelled=

tables=

submit
203
title

204
caseweight
Command(Case Weight

Specifies an explicit variable that is to be used as a case weight.

Argument

a variable
An explicit variable that is used as a case weight.
Example

caseweight pweight;

The explicit variable pweight contains the weight for each case.

caseweight;

No case weights are used.

GUI Access

Selecting the Case Weight menu item displays the dialog box shown in Figure xx. The radio button allows case weighting to be toggled. If cases are to be weighted then a variable must be selected from the candidate list of explicit variables.

Notes

(1) The caseweight statement stays in effect until it is replaced with another caseweight statement or until a reset statement is issued. If you have run a model with case weights and then want to remove the case weights from the model, the simplest approach is to issue a caseweight statement with no arguments.

(2) A variable that will be a case weight must be listed in the format as an explicit variable.

codes
Command(Codes

Lists the characters that are to be regarded as valid data for the responses.

Argument

codelist
A comma-delimited or space-delimited list of response codes.

Examples

codes 0,1,2,3;

The valid response codes are 0, 1, 2 and 3.

codes a b c d;

The valid response codes are a, b, c and d.

codes 1, 2, 3, 4, 5, " ";

The valid response codes are 1, 2, 3, 4, 5, and a blank.

codes " 1", " 2", " 3", "10";

Each response code takes two columns. The first three that are listed have leading spaces, which must be included.

GUI Access

Selecting the codes menu item displays the dialog box shown in Figure xx. The list of codes must be entered using the same syntax guidelines as described above for the codelist.

Notes

(1) If a blank is to be used as a valid response code or if a blank is part of a valid response code, double quotation marks (" ")must surround the response code that includes the blank.

(2) Codelist specifies the response codes that will be valid after any recoding has been performed by the recode statement.

(3) If a codes statement is provided, then any character that is found in the response block (as defined by the format statement) of the data file and that is not in codelist will be treated as missing-response data.

(4) Any missing-response codes (as defined by the set command argument missing) in codelist will be ignored. In other words, missing overrides the codes statement.

(5) If a codes statement is not provided, then all characters found in the response block of the data file, other than those specified as missing-response codes by the set command argument missing, will be considered valid.

(6) The number of response categories modelled by ConQuest is equal to the number of unique response codes (after recoding).

(7) Response categories and item scores are not the same thing.

datafile
Command(Data File

Specifies the name and location of the file that contains the data that will be analysed.

Argument

file name
The name or pathname (in the format used by the host operating system) of the ASCII text file that contains the data to be analysed.

Examples

datafile mydata.txt;

The data file to be analysed is called mydata.txt, and it is in the same directory as the ConQuest application.

datafile \math\test1.dat;

The data file to be analysed is called test1.dat, and it is located in the directory math.

GUI Access

A file selection dialog box is available from the menu item, File(Data File.

Notes

(1) The actual format of file name will depend upon the host operating system. For example, under the VMS operating system, the second example may have to be written as
datafile [.math]test1.dat;
(2) When inputting the response data in a data file, remember that ConQuest treats blanks and periods found in the responses as missing-response data unless you either use a codes statement to specify that one or both are to be treated as valid response codes or use the set command argument missing to change the missing-response code.
(3) The layout of your data file lines and records must conform to the rules of the format command.
(4) A file of simulated data can be created with the generate command.
delete
Command(Delete

Omit data for selected implicit variables from analyses.

Argument

This command has no argument

Options

list of implicit variables and their levels

Specifies the items that are to be deleted.

Examples

delete !item (1-10);

Delete items 1 through 10 from the analysis.

delete ! rater (2, 3, 5-8);

The above example omits data from raters 2, 3, 5, 6, 7, and 8, from the analysis.

GUI Access

Selecting the Command(Delete menu item displays the dialog box shown in Figure xx. The list of candidate implicit variables for deletion are listed in the list box. Multiple selections can be made by shift-clicking.

Notes

(1) Delete statement definitions stay in effect until a reset statement is issued.

(2) Delete preserves the original numbering of items (as determined by the format and the model statements). This means that it can be used to with existing anchor and initial values files to analyses a subset of the data.

(3) To delete data for specified values of explicit variables the missing data command can be used.

descriptives
Analysis(Descriptives(Latent Variables

Calculates a range of descriptive statistics for the estimated latent variables

Argument

This command does not have an argument.

Options

estimates=type
Type can be eap, pv, mle or wle.

If estimates=eap, the descriptive statistics will be constructed from expected a-posteriori values for each case; if estimates=pv, the descriptive will be constructed from plausible values for each case, if estimates=mle, the descriptive statistics will be constructed from maximum likelihood cases estimates and if stimates=mle, the descriptive statistics will be constructed from weighted likelihood cases estimates.

group= variable

An explicit variable. to be used as grouping variables. Results will be reported for each value of the group variable. The variable must have been listed in a previous group command.
percentiles= n1:n2:…:nd
ni is a requested percentile to be computed..
cuts= n1:n2:…:nd
Requests calculation of the proportion of students that lie within a set of intervals on the latent scale. ni is a requested cut point. The specification of d cut points results in d+1 intervals.

bench= n1:n2:n3
Requests calculation of the proportion of students that lie either side of a benchmark location on the latent scale. n1 is the benchmark location, n2 is the uncertainty in the location, expressed as standard deviation and n1 is the number of replications to use to estimate the standard error of the proportion of students above and below the benchmark location.
Redirection

>> filename

Filename is the name of a file to which results can be written.

Examples

descriptives !estimates=pv;
Using plausible values produces the mean, standard deviation and variance (and the associated error variance) for each of the latent dimensions.

descriptives !estimates=pv, group=gender;
Using plausible values produces the mean, standard deviation and variance (and the associated error variance) for each of the latent dimensions for each value of gender.

descriptives! estimates=mle, percentiles=10:50:90;
Using maximum likelihood estimates produces the mean, standard deviation and variance (and the associated error variance) for each of the latent dimensions. The 10th, 50th and 90th percentiles are also estimated for each dimension.

descriptives! estimates=pv, cuts=-0.5:0.0:0.5;
Using plausible values estimates produces the mean, standard deviation and variance (and the associated error variance) for each of the latent dimensions. The proportion of students in the four intervals; less than –0.5; between –0.5 and 0.0; between 0.0 and 0.5; and, greater than 0.5 are also estimated for each dimension.

descriptives! estimates=pv, bench=-1.0:0.1:1000;
Using plausible values estimates produces the mean, standard deviation and variance (and the associated error variance) for each of the latent dimensions. The proportion of students above and below a benchmark of –1.0 are also estimated for each dimension. The error in these proportions is based upon an uncertainty of 0.1 in the benchmark location. The error was estimated using 1000 replications.

Notes

(1) The ability estimates requested (wle, mle, eap and latent) must have been previously estimated (see show).

Directory
(no menu access)

Displays the name of the current working directory.

Example:

directory;

Notes

(1) For the gui version of ConQuest the result of this command is shown in the status bar.

Dofor…enddo
(no menu access)

This pair of commands allow for the replication of a group of commands

Argument

argument list
token = list of values which are substituted in turn the replications of the group of commands between Dofor and Enddo.

Examples

Dofor cnt=aus,deu,can;

datafile %cnt%run1.dat;

format responses 1-20;

model item;

estimate;

show >>%cnt%run1.shw;

reset;

enddo;

Sets the token x to the value 10 and the token path to the value \w:cycle2\data\. In the subsequent code the tokens contained between % characters are replaced with the corresponding strings.
Notes

equivalence
Tables(Raw Score <-> Logit Equivalence(MLE

Tables(Raw Score <-> Logit Equivalence(WLE

Tables(Raw Score <-> Logit Equivalence File(MLE

Tables(Raw Score <-> Logit Equivalence File(WLE

Instructs ConQuest to produce a raw score to ability estimate equivalence.

Argument

estimate type

Estimate type must be either wle or mle

Redirection

>> filename
A file name must be specified.
Examples

equivalence wle;

Produces a raw score to weighted likelihood estimate equivalence table.

equivalence mle >> mle.txt;

Produces a raw score to maximum likelihood estimate equivalence table and save it in the file mle.txt.
GUI Access

There are four menu items that produce equivalence tables. All are accessed through the Tables menu. Two items are provided for writing the results to the output window and two write results to a file.

Notes

(2) The equivalence table assumes a complete response vector and integer scoring.

(3) Maximum and minimum values for maximum likelihood values are set using the perfect/zero= option of the set command

estimate
Analysis(Estimate

Instructs ConQuest to begin estimation of the currently defined model.

Argument

model name
The name of the model to estimate (not yet implemented)

Options

option list
A list of comma-separated options. Each option is discussed below.
method=type
Indicates the type of numerical integration that is to be used. Type can take the value gauss, montecarlo or quadrature. The default is gauss (see note xx).
nodes=n
Specifies the number of nodes that will be used in the numerical integration. If the quadrature or gauss method has been requested, this value is the number of nodes to be used for each dimension. If the Monte Carlo method has been selected, it is the total number of nodes. The default value is 15 per dimension if the method is gauss or quadrature and 1000 nodes in total if the method is Monte Carlo.

converge=f
Instructs estimation to terminate when the largest change in any parameter estimate between successive iterations of the EM algorithm is less than f. The default value is 0.0001.

iterations=n
Specifies the maximum number of iterations for the EM algorithm. Estimation will terminate when either the iteration criterion or the convergence criterion is met. The default iterations value is 200.

storage=type
Indicates whether the estimation temporary file will be created on disk or stored in random access memory. Type can be the value ram or disk. The default is disk and is generally recommended. Estimation may be faster if ram is chosen, but if the data file is large and your computer’s random access memory is limited, it’s best to use disk.

minnode=f
Sets the minimum node value when using the quadrature method. The default is -6.0.

maxnode=f
Sets the maximum node value when using the quadrature method. The default is 6.0.

plausible=filename
When the plausible option is specified, a file containing plausible values and EAP estimates for all cases will be created and named filename. Creating a plausible values file causes any distributions requested by a show statement to be produced more quickly. The default is to create no plausible value file.

The default number of plausible values generated is five. To alter this default, use the set command argument n_plausible.

If we use np to indicate the number of plausible values that are drawn for each case and let nd be the number of dimensions in the model, then the format of the plausible value file will be as follows.

It will contain np+3 lines per case.

Line 1 will contain the case number in columns 1 through 5.

Line 2 to line np+1 will each contain nd plausible values in the format nd(t13, nd(f6.2)).

Line np+2 will contain nd EAP estimates in the format nd(f10.5, 1x).

Line np+3 will contain nd posterior variance estimates in the format nd(f10.5, 1x).

stderr=type
Specifies how or whether standard errors are to be calculated. Type can take the value full, quick or none. Full causes ConQuest to compute the full error variance-covariance matrix for the model that has been estimated. This method provides the most accurate estimates of the asymptotic error variances that ConQuest can compute. It does, however, take a considerable amount of computing time, even on very fast machines. In ‘Estimating Standard Errors’ in Chapter 12, we discuss the circumstances under which it is desirable to use the stderr=full option. None suppresses the calculation of standard errors and reduces the calculation time. The default is quick, the calculation of which ignores the covariances between response model parameters.

distribution=type

Specifies the (conditional) distribution that is used for the latent variable. Type can take the value normal, or discrete. The default is normal. If discrete is chosen fit statistics and full standard errors cannot be computed. A discrete distribution is not available with regressors.
fit=reply
Generates fit statistics that will be included in the tables created by the show statement. If reply is no, fit statistics will be omitted from the show statement tables. The default is yes. (See also the estimates option of the show command.)

deviancechange=f

Instructs estimation to terminate when the change in the deviance between successive iterations of the EM algorithm is less than f. The default value is 0.0001.

Examples

estimate;

Estimate the currently specified model using the default value for all options.
estimate ! converge=0.0001,method=quadrature,nodes=15;

Estimate the currently defined model using the quadrature method of integration, use 15 nodes for each dimension, and terminate when the change in parameter estimates is less than 0.0001 or after 200 iterations (the default for the iterations option), whichever comes first.

estimate ! method=montecarlo, nodes=200, converge=.01;

In this estimation, we are using the Monte Carlo integration method with 200 nodes and a convergence criterion of 0.01. This analysis (in conjunction with export statements for the estimated parameters) is undertaken to provide initial parameter estimates for a more accurate analysis that will follow.

estimate!method=montecarlo, nodes=2000, plausible=mdim.pls;

Estimate the currently defined model using the Monte Carlo method with 2000 nodes. After the estimation, write plausible values and EAP estimates to the file mdim.pls.

score (0,1,2,3,4) (0,1,2,3,4) () ! tasks(1-9);
score (0,1,2,3,4) () (0,1,2,3,4) ! (tasks(10-18);
model tasks + tasks*step;
estimate ! fit=no, method=montecarlo, nodes=400,
 converge=.01;

Initiates the estimation of a partial credit model using the Monte Carlo method to approximate multidimensional integrals. This estimation is done with 400 nodes, a value that will probably lead to good estimates of the item parameters, but the latent variance-covariance matrix may not be well estimated. Simulation studies (Volodin and Adams, 1995) suggest that 1000 to 2000 nodes may be needed for accurate estimation of the variance-covariance matrix. We are using 400 nodes here to obtain initial values for input into a second analysis that uses 2000 nodes. We have specified fit=no because we will not be generating any displays and thus have no need for this data at this time. We are also using a convergence criteria of just 0.01, which is appropriate for the first stage of a two-stage estimation.

GUI Access

Selecting the estimate menu item displays the dialog box shown in Figure xx.

Notes

(4) ConQuest offers three approximation methods, quadrature (Bock/Aitken quadrature), gauss (Gauss-Hermmite quadrature) and Monte Carlo, for computing the integrals that must be computed in marginal maximum likelihood estimation. The gauss method is generally the preferred approach for problems of three or fewer dimensions, while the Monte Carlo method is preferred in higher dimensions.

(5) The order in which command statements can be entered into ConQuest is not fixed. There are, however, logical constraints on the ordering. For example, show statements cannot precede the estimate statement, which in turn cannot precede the model, format or datafile statements, all three of which must be provided before estimation can take place.

(6) The iterations will terminate at the first satisfaction of any of the converge, deviancechange and iterations options.

(7) Fit statistics can be used to suggest alternative models that might be fit to the data. Omitting fit statistics will reduce computing time.

(8) Simulation results by Wu and Adams (1993) illustrate that 10 nodes per dimension will normally be sufficient for accurate estimation with the quadrature method.

(9) Use stderr=full to obtain accurate estimates of the errors (for example, to judge whether DIF is observed by comparing the estimates of some parameters to their standard errors or when you have a large number of facets, each of which has only a couple of levels).

(10) It is possible to recover the ConQuest estimate of the latent ability correlation from the output of a multidimensional analysis by using plausible values. Plausible values can be produced through the use of the show command argument cases in conjunction with the option estimates=latent.

(11) The default settings of the estimate command will result in a Gauss-Hermite method that uses 15 nodes for each latent dimension when performing the integrations that are necessary in the estimation algorithm. For a two-dimensional model, this means a total of 15(15=225 nodes. The total number of nodes that will be used increases exponentially with the number of dimensions, and the amount of time taken per iteration increases linearly with the number of nodes. In practice, we have found that a total of 4000 nodes is a reasonable upper limit on the number of nodes that can be used.
export
File(Export

Creates files that contain estimated values for any of the parameters, a file that contains the design matrix that was used in the estimation, or a log file containing information about the estimation.

Argument

info type
Info type takes one of the values in the following list and indicates the type of information that is to be exported. The format of the file that is being exported will depend upon the info type.

parameters
The file will contain the estimates of the item response model parameters. The format of the file is identical to that described for the import command argument init_parameters.
reg_coefficients
The file will contain the estimates of the regression coefficients for the population model. The format of the file is identical to that described for the import command argument init_reg_coefficients.

covariance
The file will contain the estimate of the variance-covariance matrix for the population model. The format of the file is identical to that described for the import command argument init_covariance.

designmatrix
The file will contain the design matrix that was used in the estimation. The format of the file will be the same as the format required for importing a design matrix.

logfile
The file will contain a record of all statements that are issued after it is requested, and it will contain results on the progress of the estimation.

scoreddata
The file will contain scored item response vectors for each case. The file contains one record per case. It includes a sequence number, then a PID (if provided) followed by scored responses to each (generalised) item.

Redirection

>> filename
An export file name must be specified.
Examples

export parameters >> p.dat;

Item response model parameters are to be written to the file p.dat.
export parameters >> p.dat, reg_coefficients >> r.dat;

Multiple exports can be specified with one statement.

GUI Access

Export of each of the file types is accessible as a file menu item.

Notes

(1) The format of the export files created by the parameters, reg_coefficients and covariance arguments matches the format of ConQuest import files so that export files that are written by ConQuest can be re-read as either anchor files or initial value files. See the import command for the formats of the files.

(2) The export of parameter estimates and the design matrix occurs during estimation, so the export statement(s) must be specified before the estimate statement.

(3) Two set command arguments are frequently used when export files are being created. Set update=yes, if you want the current parameter estimates in the export files to be overwritten after every iteration. This is particularly useful if you need to do long runs that may need to be interrupted, since a new run can start from the position that a previous run had reached if the export files are specified as initial value files in a subsequent command file. It is also useful if you want to use the values generated by the final iteration as initial or anchor values in a further analysis. In addition, set warnings=no, if you do not want to be prompted to okay each overwrite of the export file(s). (Error messages that describe fatal or fundamental errors will still be displayed.)

(4) The export file names remain specified until a reset statement is issued. This means that, if export file names are not changed between estimate statements, an attempt will be made to write new data to an existing file. This will result in a loss of the previous data, if warnings has been set to no.

(5) Importing and exporting doesn’t happen until the estimate statement is executed; thus, the order in which the import and export statements are entered is irrelevant, so long as they precede the estimate statement. Also, you can use the same file names for the import and export files in an analysis: initial values will be read from the files by the import statement, and then the export statement will overwrite the values in those files with the current parameter estimates as the estimation proceeds (if update=yes) or at the end of the estimation (if update=no).

(6) The best strategy for manually building a design matrix usually involves running ConQuest, using a model statement to generate a design matrix, and then exporting the automatically generated matrix, using the designmatrix argument. The exported matrix can then be edited as needed.

fit
Analysis(Fit

Reads a fit matrix and computes corresponding fit statistics

Argument

This command does not have an argument

Redirection

<< filename
A file name for the fit matrix must be specified.
GUI Access

Selecting the fit menu item displays the open file dialog box for selection of a file that contains the fit design matrix.

format
Command(Format

Describes the layout of the data in a data file by specifying variable names and their locations (either explicitly by column number or implicitly by the column locations that underlie the responses variable) within the data file.

Argument

variables names and column specs
A list of space-delimited variables that are to be analysed. Each variable is followed by a column specification.

Every format statement argument must include the reserved variable responses. The responses variable specifies the location of the ‘item’ responses. The column specifications for responses are referred to as the response block.

A response-width indicator can be given after the final response block. The width indicator, (an), indicates that the width of each response is n columns.
The reserved variable pid links data that are from a single case but are located in different records in the data file (see note (2)).

Additional user-defined variables that are listed in the argument of a format statement are called explicit variables.

A slash (/) in the format statement argument means move to the next line of the record (see note (3)).

Options

implicit variable specification

A list of user-provided, comma-separated variables that are implicitly defined through the column locations that underlie the responses variable. The default implicit variable is item or items, and you may use either in ConQuest statements.

Examples

format class 2 responses 10-30 rater 43-45 ;

The user-defined explicit variable class is in column 2. Item 1 of the response data is in column 10, item 2 in column 11, etc. The user-defined explicit variable rater is in columns 43 through 45.

format responses 1-10,15-25;

The response data are not stored in a contiguous block, so we have used a comma (,) to separate the response blocks. The above example states that response data are in columns 1 through 10 and columns 15 through 25. Commas are not allowed between explicit variables or within the column specifications for other variables.

format responses 1-10, / 1-10;

Each record consists of two lines. Columns 1 through 10 on the first line of each record contain the first 10 responses. Columns 1 through 10 on the second line of each record contain responses 11 through 20.

format responses 21-30 (a2);

If each response takes more than one column, use (an) (where n is an integer) to specify the width of each response. In the above example, there are five items. Item 1 is in columns 21 and 22, item 2 is in columns 23 and 24, etc. All responses must have the same width.

format class 3-6 rater 10-11 responses 21-30
 rater 45-46 responses 51-60;
Note that rater occurs twice and that responses also occurs twice. In this data file, two raters gave ratings to 10 items. The first rater’s identifier is in columns 10 and 11, and the corresponding ratings are in columns 21 through 30. The second rater’s identifier is in columns 45 and 46, and the corresponding ratings are in columns 51 through 60. There is only one occurrence of the variable class (in columns 3 through 6). This variable is therefore associated with both occurrences of responses. If explicit variables are repeated in a format statement, the n-th occurrence of responses will be associated with the n-th occurrence of the other variable(s); or if n is greater than the number of occurrences of the other variable(s), then the n-th occurrence of responses will be associated with the highest occurrence of the other variable(s).

format responses 11-20 ! task(10);

The option task(10) indicates that we want to refer to the implicit variable that underlies responses as 10 tasks. When no option is provided, the default name for the implicit variable is item.

format responses 11-20 ! item(5), rater(2);

The above example has two user-defined implicit variables: item and rater. There are five items and two raters. Columns 11 through 15 contain the ratings for items 1 through 5 by rater 1. Columns 16 through 20 contain the ratings for items 1 through 5 by rater 2. In general, the combinations of implicit variables are ordered with the elements of the leftmost variables cycling fastest.

format responses 1-48 ! criterion(8), essay(3), rater(2);

Columns 1 through 8 contain the eight ratings on essay 1 by rater 1, columns 9 through 16 contain the eight ratings on essay 2 by rater 1, and columns 17 through 24 contain the eight ratings on essay 3 by rater 1. Columns 25 through 48 contain the ratings by rater 2 in a similar way.

format pid 1-5 class 12-14 responses 31-50 rater 52-53;

The identification variable pid is in columns 1 through 5. The variable class is in columns 12 through 14. Item response data are in columns 31 through 50. The rater identifier is in columns 52 and 53. Here we have assumed that a number of raters have rated the work of each student and that the ratings of each rater have been entered in separate records in the data file. The specification of the pid will ensure that all of the records of a particular case are located and identified as belonging together.

GUI Access

Selecting the Command(format menu item displays the dialog box shown in Figure xx. This dialog box can be used to build a format command. Selecting each of the radio buttons in turn allows the specification of explicit variables, responses and implicit variables (see Figure YY). Each specification needs to be added to the format statement.

Notes

(1) User-provided variable names must begin with an alphabetic character and must be made up of alphabetic characters or digits. Spaces are not allowed in variable names.

(2) The reserved explicit variable pid means person id or case id. If pid is not specified in the format statement, then ConQuest generates pid values for each record on the assumption that the data file is ‘by case’. If pid is specified, ConQuest sorts the records in order of the pid field first before processing. While this means that the data for each case need not be all together and thus allows for flexibility in input format, the cost is longer processing time for doing the sort. If the records for each case are contiguous, we recommend that you leave out the pid variable in the format statement even if you have a pid field in your data.

(3) If pid is specified, output to person estimates files include the pid and will be in pid order. Otherwise output to the files will be in sequential order.

(4) The format statement is limited to reading 10 lines of data at a time. In other words, the maximum number of lines of data per record is 10. The number of records per case is unlimited. (See note (7) for the length of a line.)

(5) The total number of lines in the data set must be exactly divisible by the number of lines that are specified by the use of the slash (/) character in the format statement. In other words, each record must have the same number of lines.

(6) Commas can only be used in the column specifications of the responses variable. Column specifications for all other explicit variables must be contiguous blocks.

(7) The width (number of columns) specified for each response variable must be the same. For example, the following is not permitted: format responses 1-4 (a2) responses 5-8 (a1);.

(8) The maximum number of columns in a data file must be less than 1024.

(9) If the format statement does not contain a responses variable in its argument, ConQuest will display an error message.

(10) In Rasch modelling, it is usual to identify the model by setting the mean of the item difficulty parameters to zero. This is also the default behaviour for ConQuest, which automatically sets the value of the ‘last’ item parameter to ensure an average of zero. If you want to use a different item as the constraining item, then you can read the items in a different order. For example: format id 1-5 responses 12-15, 17-23, 16; would result in the constraint being applied to the item in column 16. But be aware, it will now be called item 12, not item 5, as it is the twelfth item in the response block.

(11) The level numbers of the item variable (that is, item 1, item 2, etc.) are determined by the order in which the column locations are set out in the response block. If you use format responses 12-23;, item 1 will be read from column 12. If you use format responses 23,12-22;, item 1 will be read from column 23.

(11)
In some testing contexts, it may be more informative to refer to the responses variable as something other than item. Specifying a user-defined variable name, such as task or question, may lead to output that is better documented. However, the new variable name for responses must then be used in the model, labels, recode, and score statements and any label file to indicate the responses variable.

generate
(no menu access)

Generates data files according to specified options. This can be used to generate a single data set, but it is more commonly used indirectly through the simulate command.

Argument

This command does not have an argument.

Options

nitems=n1:n2:…:nd

ni is the number of items on i-th dimension.

npersons=p
p is the number of people in the test.

maxscore=k
k is the maximum score for each item. For example, if the items are dichotomous, k should be 1. Note that k applies to all items, so you can’t generate items with different numbers of categories.

itemdist=type
Type is one of four arguments for specifying the item difficulties distribution: normal((:b), uniform(c:d), or file. Normal((:b) draws item difficulties from a normal distribution with mean (and variance b. Uniform(c:d) draws item difficulties from a uniform distribution with range c to d. File allows you to supply the item difficulties in a file by giving the file name. The file should be a standard text file with one line per item parameter. Each line should indicate, in the order given, the item number, the step number and the item parameter value.

For example, the file might look like:

1 0 -2.0

1 1 0.2

1 2 0.4

2 0 -1.5

..................

Note that the lines with a step number equal to 0 give the item difficulty and that the lines with a step number greater than 0 give the step parameters.

centre=reply

Requests centring of generated item parameters at zero. If reply is no, the items parameters are left as randomly generated. The default is yes.

abilitydist=type
Type is one of five arguments for specifying the distribution of the latent abilities: normal((: b), normal2((1: b1: (1: b1: k), uniform(c:d), mvnormal((1: b1: (2: b2: …: (d: bd: r12…r(d-1)(d-1)), or file. Normal((:b) draws abilities from a normal distribution with mean (and variance b. normal2((1:b1:(2:b2:k) draws abilities from a two-level normal distribution. Students are clustered in groups of size k. The within group mean and variance are (1 and b1 respectively, while the between group mean and variance are (2 and b2 respectively. If a two-level distribution is specified the group-level means of the generated values are written to the generated data file for use in subsequent analysis. Uniform(c:d) draws abilities from a uniform distribution with range c to d. mvnormal((1: b1: (2: b2: …: (d: bd: r12:…:r1d:r23:…:r(d-1)(d-1))draws abilities from a d-dimensional multivariate normal distribution. (1 to (d are the means for each of the dimensions, b1 to bd are the variances and r12 to r(d-1)(d-1) are the correlations between the dimensions. For example the a 3-dimensional multivariate distribution with the following mean vector and variance matrix:

[image: image1.wmf]12

genderses

qaae

=++

[image: image7.wmf]0.5

1.0

0.0

æö

ç÷

ç÷

ç÷

èø

is specifed as mvnormal(0.5:1:1:1:0:1:0:-0:2:0.8)

File allows you to supply the abilities in a file by giving the file name. The file should be a standard text file with one line per case. Each line should indicate, in the order given, the case number, and the ability value.

For example, the file might look like:

1
-1.0

1
0.23

1
-0.45

2
-1.5

regfile=Filename(v1:v2:v3:…:vn)

Filename is a file from which a set of regression variables can be read. The names of the regression variables are given in parenthesis after the file name, and are separated by colons (:) v1:…:vn

The values of the regression variables are written into the generated data file for use in subsequent analysis
The first line of the file must give n regression coefficients. This is followed by one line per person. Each line should indicate, in the given order, the case number and then the value or regression variable v1, then v2, and so on, until vn

For example, the file might look like:

3.0 2.1 –0.5

1
0.230 0.400 -3.000

2
-0.450 0.500 2.000

3
-1.500 3.222 -4.000

Redirection

>> filename1, filename2, filename3

Filename1 must be specified. It is the name of the generated data file. Filename2 and filename3 are optional. Filename2 is the name of the generated item difficulties file, and filename3 is the name of the generated abilities file. If item difficulties are generated, it may be useful to write out these values for comparison, so redirection to a file is necessary.

Examples

generate !nitems=30, npersons=300, maxscore=1,
 itemdist=item1.dat, abilitydist=NORMAL(0:1)
 >> sim1.dat;
A data set called sim1.dat is created. It contains the responses of 300 students to 30 dichotomously scored items. The generating values of the item difficulty parameters are read from the file item1.dat, and the latent abilities for each person are randomly drawn from a unit normal distribution with zero mean and a variance of 1.

generate !nitems=20, npersons=500, maxscore=2,
 itemdist=UNIFORM(-2:2), abilitydist=NORMAL(0:1.5)
 >> sim1.dat, sim1.itm, sim1.abl;
A data set called sim1.dat is created along with a file containing the generating values of the item parameters (sim1.itm) and another containing the generating values of the latent abilities (sim1.abl). The data set will contain the generated responses of 500 persons to 20 partial credit items with three response categories that are scored 0, 1 and 2 respectively. All of the item parameters were randomly drawn from a uniform distribution with minimum -2 and maximum 2, and the abilities are drawn from a normal distribution with zero mean and a variance of 1.5.

generate !nitems=20, npersons=500, maxscore=2,
 abilitydist=NORMAL2(0:0.7:0:0.3:20)
 >> sim1.dat, sim1.itm, sim1.abl;
A data set called sim1.dat is created along with a file containing the generating values of the item parameters (sim1.itm) and another containing the generating values of the latent abilities (sim1.abl). The data set will contain the generated responses of 500 persons to 20 partial credit items with three response categories that are scored 0, 1 and 2 respectively. All of the item parameters were randomly drawn from a uniform distribution with minimum -2 and maximum 2, and the abilities are drawn from a two-level normal distribution with within group zero mean and a variance of 0.7 and between group variance of 0.3. The group size is 20. The means of the generated abilities for each group will also be written to the data set (sim1.dat).

generate !nitems=30, npersons=300, maxscore=1,
 itemdist=item1.dat, abilitydist=NORMAL(0:1),
 regfile=reg1.dat(gender:ses)>> sim1.dat;
A data set called sim1.dat is created. It contains the responses of 300 students to 30 dichotomously scored items. The generating values of the item difficulty parameters are read from the file item1.dat, and the latent abilities for each person are randomly drawn from the regression model
[image: image12.wmf]1.000.2

01.00.8

0.20.81.0

-

æö

ç÷

ç÷

ç÷

-

èø

 where
[image: image2.wmf]12

genderses

aa

+

 is computed based upon the information given in reg1.dat and (is randomly generated as a unit normal deviate with zero mean and a variance of 1.

Notes

(1) The generate command is provided so that users interested in simulation studies can easily create data sets with known characteristics.

(2) If abilitydist=normal2((1:b1:(1:b1:k) is used then the total number of persons must be divisible by k.

(3) The random number generation in is seeded with a default value of “1”. This default can be changed with the seed option in the set command. Multiple runs of generate within one session use a single random number sequence, so any change to the default seed should be made before the first generate command is issued.

get
File(Get System File

Reads a previously saved system file.

Argument

This command does not have an argument.

Options

This command does not have any options.

Redirection

<< mysysfile.sys

mysysfile.sys is the name of a ConQuest system file that was saved during a previous ConQuest session or earlier in the current session.

Examples

Get << mysysfile.sys;

Loads the system file mysysfile.sys.

GUI Access

Selecting the file menu item displays the open dialog box.

Notes

(1) Loading a system file replaces all previously entered commands.

group
Command(Grouping Variables

Specifies the grouping variables that can be used to subset the data for certain analyses and displays.

Argument

variable list

A list of explicit variables to be used as grouping variables. The list can be comma-delimited or space-delimited.

Examples

group age grade gender;

Specifies age, grade and gender as grouping variables.

GUI Access

Selecting the Command(Grouping Variables menu item displays the dialog box shown in Figure xx. The available grouping variables are shown in the list. Multiple items can be selected by shift-clicking.

Notes

(1) Each of the grouping variables that are specified in a group statement must take only one value for each measured object (typically a person), as these are ‘attribute’ variables for each person. For example, it would be fine to use age as a group variable, but it would not make sense to use item as a regression variable.

(2) Group variables must be numeric

(3) The group statement stays in effect until it is replaced with another group statement or until a reset statement is issued.

(4) The group statement must be specified prior to estimation of the model.

import
File(Import

Identifies files that contain initial values for any of the parameter estimates, files that contain anchor values for any of the parameters, or a file that contains a design matrix.

Argument

info type
Info type takes one of the values in the following list and indicates the type of information that is to be imported. The format of the file that is being imported will depend upon the info type.

init_parameters
Indicates initial values for the response model parameters. The file will contain two pieces of information for each response model parameter that has an initial value specified: the parameter number and the value to use as the initial value. The file must contain a sequence of values with the following pattern, in the order given: parameter number, initial value, parameter number, initial value, and so forth.

For example, the following may be the contents of an init_parameters file:

1
0.567

2
1.293

3
-2.44

8
1.459
init_reg_coefficients
Indicates initial values for the regression coefficient in the population model. The file will contain three pieces of information for each regression coefficient that has an initial value specified: the dimension number, the regression coefficient number, and the value to use as the initial value. Dimension numbers are integers that run from 1 to the number of dimensions, and regression coefficient numbers are integers that run from 0 to the number of regressors. The zero is used for the constant term; or when there are no regressors, 0 is the mean. The file must contain a sequence of values with the following pattern: dimension number, regressor number, initial value, dimension number, regressor number, initial value, and so forth.

For example, the following may be the contents of an init_reg_coefficients file:

1
0 0.233

2
0 1.114

1
1 -0.44

2
1 -2.591

If you are fitting a one-dimensional model, you must still enter the dimension number. It will, of course, be 1.
init_covariance
Indicates initial values for the elements of the population model’s variance-covariance matrix. The file will contain three pieces of information for each element of the covariance matrix that has an initial value specified: the two dimension specifiers and the value to use as the initial value. Dimension specifiers are integers that run from 1 to the number of dimensions. As the covariance matrix is symmetric, you only have to input elements from the upper half of the matrix. In fact, ConQuest will only accept initial values in which the second dimension specifier is greater than or equal to the first. The file must contain a sequence of values with the following pattern: dimension specifier one, dimension specifier two, initial value, dimension specifier one, dimension specifier two, initial value, and so forth.

For example, the following may be the contents of an init_covariance file

1
1 1.33

1
2 -0.11

2
2 0.67

If you are fitting a one-dimensional model, the variance-covariance matrix will have only one element: the variance. In this case, you must still enter the dimension specifiers in the file to be imported. They will, of course, both be 1.
anchor_parameters
The specification of this file is identical to the specification of the init_parameters file. The values, however, will be taken as fixed; and they will not be altered during the estimation.
anchor_reg_coefficients
The specification of this file is identical to the specification of the init_reg_coefficients file. The values, however, will be taken as fixed; and they will not be altered during the estimation.

anchor_covariance
The specification of this file is identical to the specification of the init_covariance file. The values, however, will be taken as fixed; and they will not be altered during the estimation.
designmatrix
Specifies an arbitrary item response model. For most ConQuest runs, the model will be specified through the combination of the score and model statements. However, if more flexibility is required than these statements can offer, then an arbitrary design matrix can be imported and estimated. For full details on the relations between the model statement and the design matrix and for rules for defining design matrices, see ‘Design Matrices’ in Chapter 12 and Volodin and Adams (1995).
Redirection

<< filename

An import file name must be specified.

Examples

import init_parameters << initp.dat;

Initial values for item response model parameters are to be read from the file initp.dat.
import init_parameters << initp.dat;
import anchor_parameters << anch.dat;
Initial values for some item response parameters are to be read from the file initp.dat, and anchor values for other item response parameters are to be read from anch.dat.

import designmatrix << design.mat,anchor_c << cov.anc;

Imports a design matrix from the file design.mat and imports anchor values for the population model covariances from cov.anc. Specifying multiple arguments is permissible and is equivalent to using multiple import statements. The arguments and their related redirections are delimited by commas.

Notes

(1) After being specified, all file imports remain until a reset statement is issued.

(2) If any parameter occurs in both an anchor file and an initial value file, then the anchor value will take precedence.

(3) If any parameter occurs more than once in an initial value file (or files), then the most recent initial value is used.

(4) If any parameter occurs more than once in an anchor file (or files), then the most recent anchor value is used.

(5) Initial value files and anchor values files can contain any subset of the full parameter set.

(6) Importing and exporting cannot occur until the estimate statement is executed. If a model has been estimated then an export writes the current estimates to a file. If a model has not been estimated then an export of results will occur immediately after estimation. Also see note 8.
(7) Importing does not result in a change to the internally held estimates until a subsequent estimation command is issued.

(8) You can use the same file names for the import and export files in an analysis: initial values will be read from the files by the import statement, and then the export statement will overwrite the values in those files with the current parameter estimates as the estimation proceeds (if update=yes) or at the end of the estimation (if update=no).

(9) The number of rows in the imported design matrix must correspond to the number of rows that ConQuest is expecting. ConQuest determines this using a combination of the model statement and an examination of the data. The model statement indicates which combinations of facets will be used to define generalised items. ConQuest then examines the data to find all of the different combinations; and for each combination, it finds the number of categories. The best strategy for manually building a design matrix usually involves running ConQuest, using a model statement to generate a design matrix, and then exporting the automatically generated matrix, using the designmatrix argument of the export statement. The exported matrix can then be edited as needed before importing it with the designmatrix argument of the import statement.

(10) Comments can be included in any initial value or anchor value files. Comments are useful for documentation purpose, they are included between the comment delimiters “/*” and “*/”

(11) If a parameter is not identified, ConQuest drops this parameter from the parameter list. This has implcations for the parameter sequence numbering in anchor and initial value files. The values in these files must correspond to the parameters numbers AFTER removal of non-identified parameters from the parameter list.

Itanal

Tables(Traditional Item Statistics

Tables(Export Traditional Item Statistics

Performs a traditional item analysis for all of the generalised items.

Argument

This command does not have an argument.

Options

form=type
Type can take the value export or long. If the type is export then a more compact less well-formatted output that is easier for reading into other software is used. The default is long.

The export format is provided for reading by other computer programs. Therefore it does not include labelling. The format of the file is as follows.

If there are k possible responses to an item the file will contain k+3 lines for each generalised item.

Line 1 will contain the number of cases who responded to this item in columns 1 through 6. In will contain the item descrimination in columns 7-11. The remaining columns of the line will contain the item name.

Line 2 is currently blank.

Line 3 contains the item thresholds and the weighted mean square statistics.

Lines 4 to k+3 will contain k sets of information, one for each possible response. Columns 1-10 contain the response label, columns 11-15 contain the score for the response, columns 16-24 show the number of students who gave the response, column 25-35 give this number as a percentage of the total number of respondents to the item, 36-43 gives the point–biserial for the category, columns 44-58 give a t-test for the point-biserial and matching p-value, columns 59-64 give the mean ability for students giving this response (based upon plausible values), and columns 55-73 give the standard deviation of ability for students giving this response (based upon plausible values). If the model is multidimensional additional columns showing mean and standard deviations of abilities for each extra dimension will be shown.

Redirection

>> filename

If redirection to a file is specified, the results will be written to that file. If redirection is omitted, the results will be written to the output window or to the console.
Examples

itanal;

Performs a traditional item analysis for all of the generalised items and displays the results in the output window or on the console.

itanal >> itanal.out;

Performs a traditional item analysis for all of the generalised items and writes the results to the file itanal.out.

GUI Access

The menu item Tables(Export Traditional Item Statistics can be used to produce an export format file of traditional statistics. Note that the ability estimate type to be included cannot be specified with the GUI interface.

The menu item Tables(Traditional Item Statistics results in the dialog box shown in Figure xx. This dialog box is used to select the estimate type to be included.

Notes

(1) The analysis is undertaken for the categories as they exist after applying recode statements but before any recoding that is implied by the key statement.

(2) Traditional methods are not well-suited to multifaceted measurement. If more than 10% of the response data is missing—either at random or by design (as will often be the case in multifaceted designs)—the test reliability and standard error of measurement will not be computed.

(3) Whenever a key statement is used, the itanal statement will display results for all valid data codes. If the key statement is not used, the itanal statement will display the results of an analysis done after recoding has been applied.

(4) If the export format is used the results must be redirected to a file.

key
Command(Scoring(Key

Provides an alternative to the recode command that may be more convenient when analysing data from a simple multiple choice or perhaps a partial credit test.

Argument

codelist
The codelist is a string that has the same length as the response blocks given in the format statement. When a response block is read, the value of the first response in the block will be compared to the first value in the codelist argument of any key statements. Then the value of the second response in the response block will be compared to the second value in the codelist, and so forth. If a match occurs, then that response will be recoded to the value given in the tocode option of the corresponding key statement, after all the key statements have been read.

If leading or trailing blank characters are required, then the argument can be enclosed in double quotation symbols (" ").

When one or more key statements are supplied, any response that does not match the corresponding value in one of the codelists will be recoded to the value of key_default, which is normally 0. The value of key_default can be changed with the set command.

Options

tocode
The value to which matches between the response block and the codelist are recoded. The column width of the tocode must be equal to the width of each response as specified in the format statement. The tocode cannot contain trailing blank characters, although embedded or leading blanks are permitted. If a leading blank is required, then the tocode must be enclosed within double quotation symbols (" ").

Examples

format responses 1-14;
key abcdeaabccabde ! 1;

The format statement indicates that there are 14 items, with each response taking one column. Any time the first response is coded a, it will be recoded to 1; any time the second response is coded b, it will be recoded to 1; and so on.

format responses 1-14 !rater(2),items(7);
key abcdeaabccabde ! 1;

The format statement indicates that there are seven items and two raters, with each response taking one column. The recoding will be applied exactly as it is in the first example. Note that this means a different set of recodes will be applied for the items for each rater.

format responses 1-14 (a2);
key " a b c d e a a" ! " 1";

The format statement indicates that there are seven items, with each response taking two columns. Any time the first response is coded a with a leading blank, it will be recoded to 1 with a leading blank. Any time the second response is coded b with a leading blank, it will be recoded to 1 with a leading blank, and so on.

format responses 1-14;
key abcdeaabccabde ! 1;
key caacacdeeabccd ! 2;

The format statement indicates that there are 14 items, with each response taking one column. Any time the first response is coded a, it will be recoded to 1; if it is coded c, it will be recoded to 2. Any time the second response is coded b, it will be recoded to 1; if it is coded a, it will be recoded to 2; and so on.

format responses 1-14;
key abcd1111111111 ! 1;
key XXXX2222222222! 2;

The format statement indicates that there are 14 items, with each response taking one column. The item set is actually a combination of four multiple choice and ten partial credit items, and we want to recode the correct answers to the multiple choice items to 1 and the incorrect answers to 0, but for the partial credit items we wish to keep the codes 1 as 1 and 2 as 2. The Xs are inserted in the codelist argument of the second key statement because the response data in this file has no Xs in it, so none of the four multiple choice items will be recoded to 2. While the second key statement doesn’t actually do any recoding, it prevents the 2 codes in the partial credit items from being recoded to 0, as would have occurred if only one key statement had been given.

GUI Access

Selecting the key menu item displays the dialog box shown in Figure xx. This dialog box can be used to build a key command. The syntax requirements for the string to be entered as the Key String are as described above for the codelist.

Notes

(1) The recoding that is generated by the key statement is applied after any recodes specified in a recode statement.

(2) Incorrect responses are not recoded to the key_default value (0 unless changed by the set command) until all key statements have been read and all correct-response recoding has been done.

(3) The key_default value can only be one character in width. If the responses have a width that is greater than one column, then ConQuest will pad the key_default value with leading spaces to give the correct width.

(4) Whenever a key statement is used, the itanal command will display results for all valid data codes. If the key statement is not used, the itanal command will display the results of an analysis done after recoding has been applied.

(5) Any missing-response values (as defined by the set command argument missing) in codelist will be ignored. In other words, missing overrides the key statement.

(6) Tocode can be a missing-response value (as defined by the set command argument missing). This will result in any matches between the responses and codelist being treated as missing-response data.

labels
Command(Labels

Specifies labels for any or all of the implicit, variables, explicit variables, dimensions and parameters.

Argument

The labels statement has two alternative syntaxes. One reads the labels from a file; and one directly specifies the labels.

If the labels statement is provided without an argument, then ConQuest assumes that the labels are to be read from a file and that redirection will be provided.
If an argument is provided, it must contain two elements separated by one or more spaces. The first element is the level of the variable (e.g., 1 for item 1), and the second element is the label that is to be attached to that level. If the label contains blank characters, then it must be enclosed in double quotation marks (" ").

Options

The option is only used when the labels are being specified directly.

variable name
The variable name to which the label applies. The variable name can be one of the implicit variables or one of the explicit variables or it can be one of dimensions, parameters or fitstatistics. Dimensions is used to enter labels for the dimensions in a multidimensional analysis, Parameters is used to enter labels for the parameters in an imported design matrix. Fitstatistics is used to enter labels for the tests in an imported fit matrix.

Redirection

<< filename
Specify the name of a file that contains labels. Redirection is not used when you are directly specifying labels.

The label file must begin with the special symbol ===> (a string of three equal signs and a greater than sign) followed by a variable name. The following lines must each contain two elements separated by one or more spaces. The first element is the level, and the second element is the label for that level. If a label includes blanks, then that label must be enclosed in double quotation marks (" "). The following is an example:

===> item

1 BSMMA01

2 BSMMA02

3 BSMMA03

4 BSMMA04

5 BSMMA05

===> rater

1 Frank

2 Nikolai

3 "Ann Marie"

4 Wendy

Examples

labels << example1.nam;
A set of labels is contained in the file example1.nam.

labels 1 "This is item one" ! item
This gives the label This is item one to level 1 for the variable item.

GUI Access

Select Command(Labels, to read a labels file. Direct label specification is only available using the command line interface.

Notes

(1) The reset statement removes all label definitions.

(2) Assigning a label to a level for a variable that already has a label assigned will cause the original label to be replaced with the new label.

(3) There is no limit on the length of labels, but most ConQuest displays are limited in the amount of the label that can be reported. For example, the tables of parameter estimates produced by the show statement will display only the first 11 characters of a label.

(4) Labels are not required by ConQuest, but they are of great assistance in improving the readability of any ConQuest printout, so their use is strongly recommended.

let
(no menu access)

Assigns string values to tokens that can used in subsequent syntax

Argument

argument list
A list of comma-separated arguments. Each argument is assigns a string to a token.

t=string
Sets the value of the token named ‘t’ to the string.

Examples

let x=10;

Sets the token x to the value 10.

let x=10,path=\w:cycle2\data\;

Sets the token x to the value 10 and the token path to the value \w:cycle2\data\

let x=10,path=\w:cycle2\data\;

datafile %path%run1.dat;

format responses 1-%x%;

model item;

estimate;

show >>%path%run1.shw;

Sets the token x to the value 10 and the token path to the value \w:cycle2\data\. In the subsequent code the tokens contained between % characters are replaced with the corresponding strings.
Notes

(1) If a token is defined more than once then the last definition takes precedence

(2) A reset command clears all tokens.

(3)
Tokens implement a simple string substitution; as such they cannot be used until after the let command is executed. In the console version commands are executed command line by line. In the gui version commands are executed in batches when they are submitted for processing via the Run, menu item. The result is slightly different behaviour in the let command between the two versions.

(4)
To include the characters “;”, “=” or “,” in a token, use “|”, “/” or “$” respectively.
model
Command(Model

Specifies the item response model that is to be used in the estimation. A model statement must be provided before any estimation can be undertaken.

Argument

a model
The model statement argument is a list of additive terms containing implicit and explicit variables. It provides an expression of the effects that describe the difficulty of each of the responses. The argument rater+item+item*step, for example, consists of three terms: rater, item and item*step. The rater and item terms indicate that we are modelling the response probabilities with a main effect for the rater (their harshness, perhaps) and a main effect for the item (its difficulty). The third term, an interaction between item and step, assumes that the items we are modelling are polytomous and that the step transition probabilities vary with item. (See note (1).)

Terms can be separated by either a plus sign (+) or a minus sign (-) (a hyphen or the minus sign on the numeric keypad), and interactions between more than two variables are permitted.

Examples

model item;

The model statement here contains only the term item because we are dealing with single-faceted dichotomous data. This is the simple logistic model.

model item + item * step;

This is the form of the model statement used to specify the partial credit model. In the previous example, all of the items were dichotomous, so a model statement without the item*step term was used. Here we are specifying the partial credit model because we want to analyze polytomous items or perhaps a mixture of dichotomous and polytomous items.

model item + step;

In this example, we assume that step doesn’t interact with item. That is, the step parameters are the same for all items. Thus we have the rating scale model.

model rater + item + rater*item*step;

Here we are estimating a simple multifaceted model. We estimate rater and item main effect and then estimate separate step-parameters for each combination of rater and item.

model item - gender + item*gender;

The model statement that we are using has three terms (item, gender, and item*gender). These three terms involve two facets, item and gender. As ConQuest passes over the data, it will identify all possible combinations of the item and gender variables and construct 12 (six items by two genders) generalised items. The model statement asks ConQuest to describe the probability of correct responses to these generalised items using an item main effect, a gender main effect and an interaction between item and gender.

The first term will yield a set of item difficulty estimates, the second term will give the mean abilities of the male and female students respectively, and the third term will give an estimate of the difference in the difficulty of the items for the two gender groups. This term can be used in examining DIF. Note that we have used a negative sign in front of the gender term. This ensures that the gender parameters will have the more natural orientation of a higher number corresponding to a higher mean ability. (See note (2).)

model rater + criteria + step;

This model statement contains three terms (rater, criteria and step) and includes main effects only. An interaction term rater*criteria could be added to model variation in the difficulty of the criteria across the raters. Similarly, we have applied a single step-structure for all rater and criteria combinations. Step structures that were common across the criteria but varied with raters could be modelled by using the term rater*step, step structures that were common across the raters but varied with criteria could be modelled by using the term criteria*step, and step structures that varied with rater and criteria combinations could be modelled by using the term rater*criteria*step.

score (0,1,2,3) (0,1,2,3) () () () () ! item (1-6);
score (0,1,2,3) () (0,1,2,3) () () () ! item (7-13);
score (0,1,2,3) () () (0,1,2,3) () () ! item (14-17);
score (0,1,2,3) () () () (0,1,2,3) () ! item (18-25);
score (0,1,2,3) () () () () (0,1,2,3) ! item (26-28);
model item+item*step;

The score statement indicates the number of dimensions in the model. The model that we are fitting here is a partial credit model with five dimensions, as indicated by the five score lists in the score statements. (For further information, see the score command.)

GUI Access

Selecting the Command(Model menu item displays the dialog box shown in Figure xx. This dialog box can be used to build a model command. Select an item from the list and add it to the model statement.

Notes

(3) The model statement specifies the formula of the log odds ratio of consecutive categories for an item. For example, we supply the model statement

model rater + item + rater*item*step;.

If we then use Pnrik to denote the probability of the response of person n to item i being rated by rater r as belonging in category k, then the model above corresponds to

log (Pnrik/Pnrik-1) = (n – ((r + (i + (irk),

where (n is person ability; (r is rater harshness; (i is item difficulty; and (irk is the step parameter for item i, rater r, and category k. Similarly, if we use the model statement

model – rater + item + rater*item*step;,

then the corresponding model will be

log (Pnrik/Pnrik-1) = (n – (–(r + (i + (irk).

(4) The signs indicate the orientation of the parameters. A plus sign indicates that the term is modelled with difficulty parameters, whereas a minus sign indicates that the term is modelled with easiness parameters.

(5) In ‘The Structure of ConQuest Design Matrices’ in Chapter 12, we describe how the terms in the model statement argument result in different versions of the item response model.

(6) The model statement can be used to fit different models to the same data. The fitting of a multidimensional model as an alternative to a unidimensional model can be used as an explicit test of the fit of data to a unidimensional item response model. The deviance statistic can be used to choose between models. Fit statistics can be used to suggest alternative models that might be fit to the data.

(7) When a partial credit model is being fitted, all score categories between the highest and lowest categories must contain data. (This is not the case for the rating scale model.) See Chapter 9 for an example and further information.

(8) If ConQuest is being used to estimate a model that has within-item multidimensionality, then the set command argument constraints=cases must be provided. ConQuest can be used to estimate a within-item multidimensional model without constraints=cases. This will, however, require the user to define and import a design matrix. The comprehensive description of how to construct design matrices for multidimensional models is beyond the scope of this manual.

(9) A model statement must be supplied even when a model is being imported. The imported design matrix replaces the ConQuest generated matrix. The number of rows in the imported design matrix must correspond to the number of rows in the ConQuest-generated design matrix. In addition, each row of the imported matrix must refer to the same category and generalised item as those to which the corresponding row of the ConQuest-generated design matrix refers. ConQuest determines this using a combination of the model statement and an examination of the data. The model statement indicates which combinations of facets will be used to define generalised items. ConQuest then examines the data to find all of the different combinations; and for each combination, it finds the number of categories.

missing
Command(Missing Values

Set missing values for each of the explicit variables.

Argument

list of missing codes

The list of missing codes of missing codes is a comma separated list of values that will be treated as missing values for the subsequently listed explicit variable(s).

When checking for missing codes two types of matches are possible. EXACT matches occur when a code in the data is compared to a missing code value using an exact string match. A code will be regarded as missing if the code string matches the missing string exactly, including leading and trailing blank characters. The alternative is a TRIM match that first trims leading and trailing spaces from both the missing string and the code string and then compares the results.

The key words, blank and dot, can be used in the missing code list to ensure TRIM matching of a blank character and a period. Values in the list of codes that are placed in double quotes are matched with an EXACT match. Values not in quotes are matched with a TRIM match.

Option

list of explicit variables

A comma separated list of explicit variables.

Examples

missing blank, dot, 99! age;
Sets blank, dot and 99 (all using a trim match) as missing data for the explicit variable age.

missing blank, dot, “ 99”! age;
Sets blank, and dot (using a trim match) and 99 with leading spaces (using an exact match) as missing data for the explicit variable age.

GUI Access

Selecting Command(missing values displays the dialog box shown in Figure xx. Select explicit variables from the list (shift-click for multiple selections) and choose the matching missing value codes. The syntax of the missing code list must match that described above for list of missing codes.
Notes

(1) This command control setting missing values for explicit variables only. For setting the missing values for response data see the respmiss option of the set command.

plot (gui version only)
plot

Produces a variety of graphical displays.

Argument

plot type
plot type takes one of the values in the following list and indicates the type of plot that is to be produced.

icc
Item characteristic curves (by score category)
mcc
Item characteristic curves (by response category)
ccc
Cumulative item characteristic curves

expected
Item expected score curves

tcc
Test characteristic curve

iinfo
Item information function

tinfo
Test information function

Options

gins=ginlist
ginlist is a list of generalised item numbers. For the arguments; icc, ccc, expected, and iinfo one plot is provided for each listed generalised item. For the arguments tcc and tinfo a single plot is provided with the set of listed items treated as a test. The default is all.

bins=n
n is the number of groups cases that are used for the raw data. The default is 10.

mincut=k
For the arguments; icc, ccc, expected, and iinfo k is logit cut between the first and second groups of cases. For the arguments tcc and tinfo is the minimum value for which the plot is drawn. The default is –5.
maxcut=k
For the arguments; icc, ccc, expected, and iinfo k logit cut between the last and second last groups. For the arguments tcc and tinfo is the maximum value for which the plot is drawn. The default is 5.

minscale=k
Specifies the minimum value (k) for which the plot is drawn. If this command is not used, the minimum value will be calculated automatically.

maxscale=k
Specified the maximum value (k) for which the plot is drawn. If this command is not used, the maximum value will be calculated automatically.

bintype=size/width

Specifies that the bins are either of equal size (in terms of number of cases) or of equal width (in terms of logits). The default is size. If bintype=size, then the mincut and maxcut options are ignored.

raw=reply
Controls display of raw data. If reply is no the raw data is not shown in the plot. If reply is yes the raw data is shown in the plot. The default is yes.

overlay=reply

For the arguments; icc, ccc, expected, and iinfo if reply is yes the set of requested plots are shown in a single window. If reply is no the set of requested plots are each shown in a separate window.

For the arguments; tcc and tinfo if reply is yes the requested plots is displayed in the current active plot window. If no window us currently active a new one is created. If reply is no the requested plot is shown in a new separate window.

The default is no.

estimates=type
Type is one of wle, mle, eap and latent. This option sets the type of case estimate that is used for constructing the raw data. The default is latent. This option is ignored for the arguments tcc, iinfo and tinfo.

group= variable

An explicit variable. to be used as grouping variables. Raw data plots will be reported for each value of the group variable. The variable must have been listed in a previous group command.
Examples

plot icc;
Plots item characteristics curves for all generalised items in separate windows.

plot icc !gins=1-4:7;
Plots item characteristics curves for generalised items 1, 2, 3, 4 and 7 in separate windows.

plot icc !gins=1-4:7,raw=no,overlay=yes;
Overlays item characteristics curve plots for generalised items 1, 2, 3, 4 and 7 in a single window and does not show raw data.

plot tcc !gins=1-4:7,mincut=-10,maxcut=10;
Plots a test characteristic curve, assuming a test made up of items 1, 2, 3, 4 and 7 and uses ability range from –10 to 10.

plot tcc !gins=1-6,mincut=-10,maxcut=10;

plot tcc !gins=7-12,mincut=-10,maxcut=10,overlay=yes;
Displays two test characteristic curves in the same plot. One for the first six items and one for items 7 to 12.

Notes

(2) The ability estimates requested (wle, mle, eap and latent) must have been previously estimated (see show).

(3) For dichotomous items the first category is not plotted in the item characteristic curve plot.

(4) The last category is not plotted for cumulative item characteristic curves

(5) The item thresholds and item parameters estimates are displayed for the plotted generalised item.

(6) Fit statistics are provided if (a) they have been estimated and (b) if the model is of the form x+x*step

(7) See a description of wingraph (appendix XX) for details on how plots can be manipulated after they are produced.

put
File(Save System File

Saves a system file.

Argument

This command does not have an argument.

Options

This command does not have any options.

Redirection

>> mysysfile.sys

mysysfile.sys is the name of a ConQuest system file that will be created. Reading this file with the get command allows the current session to be continued at a later time.

Examples

put >> mysysfile.sys;

Saves the system file mysysfile.sys.

GUI Access

Select File(Save System file.

quit
File(Exit

Terminates the program. Exit has the same effect.

Example

quit;

ConQuest terminates. All ConQuest system values will be set to their default values when you next run the application.

GUI Access

Select File(exit.

Notes

(1) If you execute a command file that includes a quit statement, the quit statement will terminate the ConQuest program. If you do not wish to terminate the ConQuest program at that point, omit the quit statement from the command file.

recode
Command(Recode

Changes raw response data to a new set of values for implicit variables.

Argument

(from1 from2 from3…) (to1 to2 to3…)

The argument consists of two code lists, the from codes list and the to codes list. When ConQuest finds a response that matches a from code, it will change (or recode) it to the corresponding to code. The codes in either list can be comma-delimited or space-delimited.

Options

list of variables and their levels

Specifies the items to which the recoding in the to codes list should be applied. The default is to apply the recoding to all responses.

Examples

recode (a b c d) (0 1 2 3);

Recode a to 0, b to 1, c to 2 and d to 3. The recode is applied to all responses.

recode (a,b,c,d) (0,1, 2, 3)!item (1-10);

Recode a to 0, b to 1, c to 2 and d to 3. The recode is applied to the responses to items 1 through 10.

recode (" d" " e") (3 4);

Recode d with a leading blank to 3, and recode e with a leading blank to 4. If you want to use leading, trailing or embedded blanks in either code list, they must be enclosed in double quotation marks (" ").

recode (1 2 3) (0 0 1) ! rater (2, 3, 5-8);

The above example states that for raters 2, 3, 5, 6, 7, and 8, recode response data 1 to 0, 2 to 0, and 3 to 1.

recode (e,f) (d,d)!essay (A,B), school(" 1001"," 1002",
" 1003");

Recode responses e and f to d when the essays are A and B and the school code is 1001, 1002 or 1003 preceded by two blanks. The options here indicate an AND criteria.

recode (e,f) (d,d)!essay (A,B);
recode (e,f) (d,d)!school(" 1001", " 1002"," 1003")

Recode responses e and f to d when the essays are A or B or when the school code is 1001, 1002 or 1003 preceded by two blanks or when both criteria apply. The use of the two recodes allows the specification of an OR criteria.

GUI Access

Selecting Command(Recode displays the dialog box shown in Figure xx. The list will show all currently defined implicit variables. To recode for sepecific variables select them from the list (shift-click for multiple selections) and select Specify Recodes. A recode dialog box like that shown in Figure yy will then be displayed. A from codes list to codes list can then be entered following the syntax guidelines given above.

Notes

(4) The length of the to codes list must match the length of the from codes list.
(5) Recode statement definitions stay in effect until a reset statement is issued.

(6) If a key statement is used in conjunction with a recode statement, then any key statement recoding is applied after the recode statement recoding. The recode statement is only applied to the raw response data as it appears in the response block of the data file.

(7) Any missing-response value (as defined by the set command argument missing) in the from code list will be ignored.

(8) Missing-response values (as defined by the set command argument missing) can be used in the to code list. This will result in any matches being recoded to missing-response data.

(9) Any codes in the response block of the data file that do not match a code in the from list will be left untouched.

(10) When ConQuest models the data, the number of response categories that will be assumed for each item will be determined from the number of distinct codes after recoding. If item 1 has three distinct codes, then three categories will be modelled for item 1; if item 2 has four distinct codes, then four categories will be modelled for item 2.

(11) When a partial credit model is being fitted, all score categories between the highest and lowest categories must contain data. (This is not the case for the rating scale model.) The recode statement is used to do this. See Chapter 9 for an example and further information.

(12) A score statement is used to assign scores to response codes. If no score statement is provided, ConQuest will attempt to convert the response codes to scores. If this cannot be done, an error will be reported.

regression
Command(Regression Model

Specifies the independent variables that are to be used in the population model.

Argument

variable list

A list of explicit variables to be used as predictors of the latent variable. The list can be comma-delimited or space-delimited.

Examples

regression age grade gender;

Specifies age, grade and gender as the independent variables in the population model; that is, we are instructing ConQuest to regress latent ability on age, grade and gender.

regression SES,y1,y2;

Specifies SES, y1 and y2 as the independent variables in the population model.

regression;

Specifies a population model that includes a mean only.

GUI Access

Selecting Command(Regression Model results in a dialog box like that shown in Figure xx. Select regression model variables from the currently defined list of explicit variables (shift-click to make multiple selections).

Notes

(1) Each of the independent variables that are specified in a regression statement must take only one value for each measured object (typically a person), as these are ‘attribute’ variables for each person. For example, it would be fine to use age as a regression variable, but it would not make sense to use item as a regression variable.

(2) If no regression statement is supplied or if no variable is supplied in the regression statement, a constant is assumed, and the regression coefficient that is estimated is the population mean.

(3) A constant term is always added to the supplied list of regression variables.

(4) If you want to regress the latent variable onto a categorical variable, then the categorical variable must first be appropriately recoded. For example, dummy coding or contrast coding can be used. A variable used in regression must be a numerical value, not merely a label. For example, gender would normally be coded as 0 and 1 so that the estimated regression is the estimated difference between the group means. Remember that the specific interpretation of the latent regression parameters depends upon the coding scheme that you have chosen for the categorical variable.

(5) The regression statement stays in effect until it is replaced with another regression statement or until a reset statement is issued. If you have run a model with regression variables and then want to remove the regression variables from the model, the simplest approach is to issue a regression statement with no argument.

Reset
Command(Reset

Resets all ConQuest system values to their default values. It should be used when you wish to erase the effects of all previously issued commands.

Example:

reset;

GUI Access

Select Command(Reset

Notes:

(1) The reset statement can be used to separate jobs that are put into a single command file. The reset statement returns all values to their defaults. Even though many values may be the same for the analyses in the command file, we advise resetting, as you may be unaware of some values that have been set by the previous statements.

(2) When a reset statement is issued, the output buffer is cleared automatically, with no prior warning.

Score
Command(Scoring(Non-Key

Describes the scoring of the response data.

Argument

(code1 code2 code3…) (score1dim1 score2dim1 score3dim1…) (score1dim2 score2dim2 score3dim2…) …

The first set of parentheses contains a set of codes (the codes list). The second set of parentheses contains a set of scores on dimension one for each of those codes (a score list). The third set contains a set of scores on dimension two (a second score list) and so on. The number of separate codes in the codes list indicates the number of response categories that will be modelled for each item. The number of score lists indicates the number of dimensions in the model. The codes and scores in the lists can be comma-delimited or space-delimited.

Options

list of variables and levels

Specifies the responses to which the scoring should be applied. The default is to apply the scoring to all responses.

Examples

score (1 2 3) (0 1 2);

The code 1 is scored as 0, code 2 as 1, and code 3 as 2 for all responses.

score (1 2 3) (0 0.5 1.0);

The code 1 is scored as 0, code 2 as 0.5, and code 3 as 1.0 for all responses.

score (a b c) (0 0 1);

The code a is scored as 0, b as 0 and c as 1 for all responses. As there are three separate codes in the codes list, the model that will be fitted if this score statement is used will have three response categories for each item. The actual model will be an ordered partition model because both the a and b codes have been assigned the same score.

score (a b c) (0 1 2) ! items (1-10);
score (a b c) (0 0 1) ! items (11- 20);

The code a is scored as 0, b as 1, and c as 2 for items 1 through 10, while a is scored 0, b is scored 0, and c is scored 1 for items 11 through 20.

score (a , <b,c>, d) (0,1,2) ! items (1-30);

The angle brackets in the code list indicate that the codes b and c are to be combined and treated as one response category, with a score of 1. Compare this with the next example.

score (a, b, c, d) (0, 1, 1, 2) ! items (1-30);

In contrast to the previous example, this score statement says that b and c are to be retained as two separate response categories, although both have the same score of 1.

score (a+," a",b+," b",c+," c") (5,4,3,2,1,0)
 !essay(1,2), rater(A102,B223);

The option list can contain more than one variable. This example scores the responses in this fashion for essays 1 and 2 and raters A102 and B223. Double quotation marks are required when a code has a leading blank.

score (1 2 3) (0 1 2) (0 0 0) (0 0 0)!items (1-8,12);
score (1 2 3) (0 0 0) (0 1 2) (0 0 0)!items (9,13-16,18);
score (1 2 3) (0 0 0) (0 0 0) (0 1 2)!items (10,11,17);

To fit multidimensional models, multiple score lists are provided. Here, the score statement has three score lists after the codes list, so the model that is fitted will be three-dimensional. Items 1 through 8 and item 12 are on dimension one; items 9, 13 through 16 and 18 are on dimension two; and items 10, 11 and 17 are on dimension three. Because each item is assigned to one dimension only (as indicated by the zeros in all but one of the score lists for each score statement), we call the model that will be fitted when the above score statements are used a between-item multidimensional model.

score (1 2 3) (0 1 2) () ! items (1-8,12);
score (1 2 3) () (0 1 2) ! items (9,13-16,18);
score (1 2 3) (0 1 2) (0 1 2) ! items (10,11,17);

If nothing is specified in a set of parentheses in the score list, ConQuest assumes that all scores on that dimension are zero. This sequence of score statements will result in a two-dimensional model. Items 1 through 8 and item 12 are on dimension one; items 9, 13 through 16 and 18 are on dimension two; and items 10, 11 and 17 are on both dimension one and dimension two. We call models of this type within-item multidimensional. See note (4).

GUI Access

Selecting Command(Scoring(Non-Key displays the dialog box shown in Figure xx. The list will show all currently defined implicit variables. To score for specific variables select them from the list (shift-click for multiple selections) and select Specify Scores. A score dialog box like that shown in Figure yy will then be displayed. A from codes list to codes list can then be entered following the syntax guidelines given above. Scoring needs to be specified for each dimension.

Notes

(1) When estimation is requested, ConQuest applies all recodes and then scores the data. This sequence is independent of the order in which the recode and score statements are entered.

(2) Score statements stay in effect until a reset statement is issued.

(3) In the current version of ConQuest, a score statement that includes angle brackets results in the automatic generation of a recode statement. For example

score (a , <b,c>, d) (0,1,2);
becomes the equivalent of

recode (b,c) (b, b);

score (a , b, d) (0,1,2);
and stays in effect until a reset statement is issued. This behaviour is considered undesirable and will be addressed in future releases.

(4)
Note about plots and thresholds ad scores
(4) The current version of ConQuest cannot use a score and model statement combination to automatically generate within-item multidimensional models unless the set command argument constraints=cases is specified. To estimate within-item multidimensional models without setting constraints=cases, specify the desired score and model statements, ignore the warnings that are issued and then supply an imported design matrix.

(5) ConQuest makes an important distinction between response categories and response levels (or scores). The number of response categories that will be modelled by ConQuest for an item is determined by the number of unique codes that exist for that item, after performing all recodes. ConQuest requires a score for each response category. This can be provided via the score statement. Alternatively, if the score statement is omitted, ConQuest will treat the recoded responses as numerical values and use them as scores. If the recoded responses are not numerical values, an error will be reported.

(6) In a unidimensional analysis, a recode statement can be used as an alternative to a score statement. (See note (5).)

(7) The score statement can be used to indicate that a multidimensional item response model should be fitted to the data. The fitting of a multidimensional model as an alternative to a unidimensional model can be used as an explicit test of the fit of the data to a unidimensional item response model.

(8) If non-integer scoring is used ConQuest can fit two-parameter models and generalised partial credit models, but of course does not estimate discrimination parameters. This means that ConQuest can be used to draw plausible values for previously estimated models which allow different discrimations.

set
Command(Set

Specifies new values for a range of ConQuest system variables or returns all system values definable through the set command to their default values.

Argument

argument list
A list of comma-separated arguments. Each argument is described below.

seed=n
Sets the seed that is used in drawing random nodes for use in Monte Carlo estimation method. The default seed is 1.

n_plausible=n
Sets the number of vectors of plausible values to be drawn for each case when a plausible value file is requested in estimation. The default is 5.
fitdraws=n
Sets the number of draws from the posterior that are used in estimating fit statistics. The default is 1.

p_nodes=n
Sets the number of nodes that are used in the approximation of the posterior distributions, which are used in the drawing of plausible values and in the calculation of EAP estimates. The default is 2000.

f_nodes=n
Sets the number of nodes that are used in the approximation of the posterior distributions in the calculation of fit statistics. The default is 2000.

iterlimit=n
Sets the maximum number of iterations for which estimation will proceed without improvement in the deviance. The minimum value permitted is 5. The default value is 20.

innerloops=n
Sets the maximum number of Newton steps that will be undertaken for each item response model parameter in the M-Step. The default value is 10.

constraints=type
Sets the way in which identification constraints are applied. Type can take the values default, items, cases or none.

If the constraint is set to items, then identification constraints will be applied that make the mean of the parameter estimates for each term in the model statement (excluding those terms that include step) zero. For example, the model item+rater would be identified by making the average item difficulty zero and the average rater harshness zero. This is achieved by setting the difficulty of the last item on each dimension to be equal to the negative sum of the difficulties of the other items on the dimension.

If the constraint is set to cases, then constraints will be applied through the population model by forcing the means of the latent variables to be set to zero and allowing all item parameters to be free. If regression anchors are supplied, then the regression parameters will be fixed at the values provided and any unanchored regression coefficients will be fixed to zero. The first term in the model statement will not have a constraint imposed, but any additional terms will generate sets of parameter estimates that are constrained to have a zero mean.

If the constraint is set to default, then constraints=cases will be applied if all regression parameters are found to be anchored; otherwise, constraints=items will be used.

The default value is items if no constraints argument is provided.

update=reply
Reply can be yes or no. If export files of item parameter estimates are requested, setting update to yes will result in these files being updated after every iteration. The default value is no.

warnings=reply
Reply can be yes or no. If warnings are set to no, then messages that do not describe fatal or fundamental errors are suppressed. The default value is yes.

keeplastests=reply
Reply can be yes or no. If iterations terminate at a non-best solution then setting keeplastests to yes will result in current (non-best) parameter estimates being written retained. The default value is no.

logestimates=reply
Reply can be yes or no. If a log file is requested, setting logestimates to yes will result in parameter estimates being written to the log file after every iteration. The default value is yes.

zero/perfect=r
If maximum likelihood estimates of the cases are requested, then this value is used to compute finite latent ability estimates for those cases with zero or perfect scores. The default value is 0.3.

mle_criteria=n
The convergence criteria that is used in the Newton-Raphson routine that provides maximum likelihood case estimates. The default is 0.005.

key_default=n
The value to which any response that does not match its corresponding value in a key statement (and is not a missing-response code) will be recoded. The default is 0.

respmiss=reply
Controls the values that will be regarded as missing-response data. Reply can be none, blank, dot or both. If none is used, no missing-response values are used. If blank is used, then blank response fields are treated as missing-response data. If dot is used, then any response field in which the only non-blank character is a single period (.) is treated as missing-response data. If both is used, then both the blank and the period are treated as missing-response data. The default is both.

Examples

set update=yes;

Sets update to yes and therefore writes updated export files after every iteration.

set constraints=cases,seed=20;

Sets the identification constraints to cases and the seed for the Monte Carlo estimation method to 20.

set;

Returns all of the set arguments to their default values.

GUI Access

Select Command(Set

Notes

(1) All of the set arguments are returned to their default values when a set statement without an argument is issued. If a model has been estimated, then issuing this statement will require that the model be re-estimated before show or itanal statements are issued.

(2) If the set statement has an argument, then only those system variables in the argument will be changed.

(3) The key_default value can only be one character in width. If the responses have a width that is greater than one column, then ConQuest will pad the key_default value with leading spaces to give the correct width.

(4) If warnings is set to no, then the output buffer will be automatically cleared, without warning, whenever it becomes full. This avoids having to respond to the ‘screen buffer is full’ messages that will be displayed if you are running an analysis using the GUI interface.

(5) Setting warnings to no will typically be used in conjunction with setting update to yes to avoid being warned of a file overwrite at every iteration when using an export statement.

(6) ConQuest uses the Monte Carlo method to estimate the mean and standard deviation of the marginal posterior distributions for each case. The system value p_nodes governs the number of random draws in the Monte Carlo approximations of the integrals that must be computed. In the unidimensional case, this method is inefficient; and future versions of ConQuest will implement a quadrature method as a more efficient alternative.

(7) Constraints=cases must be used if you want ConQuest to automatically estimate models that have within-item multidimensionality. If you want ConQuest to estimate within-item multidimensional models without the use of constraints=cases, you will have to define and import your own design matrices. The comprehensive description of how to construct design matrices for multidimensional models is beyond the scope of this manual.

show
show

Produces a sequence of displays to summarise the results of the estimation.

Argument

parameters
Requests displays of the parameter estimates in tabular and graphical form. These results can be written to a file or displayed in the output window or on the console. This is the default, if no argument is provided.
cases
Requests parameter estimates for the cases. These results must be written to a file.
Options

estimates=type
Type can be eap, latent, mle or none
.

When the argument is parameters or no argument is provided, this option specifies what to plot for the case distributions. If estimates=eap, the distribution will be constructed from expected a-posteriori values for each case; if estimates=latent, the distribution will be constructed from plausible values so as to represent the latent distribution; and if estimates=mle, the distribution will be constructed from maximum likelihood cases estimates. This provides a representation of the latent population distribution. If estimates=none, then the case distributions are omitted from the show output. If no estimates option is provided and the estimate statement includes fit=yes (explicitly or by default), the default is to use plausible values; if the estimate statement includes fit=no, the default is to omit the distributions from the show output.

When the argument is cases, this option gives the type of estimate that will be written to an output file. (See ‘Redirection’ below for the file formats.) Estimates=none cannot be used, and there is no default value. Therefore, you must specify eap, latent, or mle when the argument is cases.

tables=value list
If parameters output is requested, a total of ten different tables can be produced. If a specific set of tables is required, then the tables option can be used to indicate which tables should be provided. Value list consists of one or more of the integers 1 through 10, separated by colons (:) if more than one table is requested.

The contents of the tables are:

1
A summary showing the model estimated, the number of parameters, the name of the data file, the deviance and the reason that iterations terminated.

2
The estimates, errors and fit statistics for each of the parameters in the item response model.

3
Estimates for each of the parameters in the population model and reliability estimates.

4
A map of the latent distribution and the parameter estimates for each term in the item response model.

5
A vertical map of the latent distribution and threshold estimates for each generalised item.

6
A horizontal map of the latent distribution and threshold estimates for each generalised item.

7
A table of threshold estimates for each generalised item.

8
A table of item parameters estimates for each generalised item.

9
A map of the latent distribution and the parameter estimates for each term in the item response model with items broken out by dimension.

10
A table of the asymptotic error variance/covariance matrix for all parameters

labelled=reply
Reply can be yes or no. Labelled=no gives a simple form of the output that only includes a list of parameter numbers and their estimates. Labelled=yes gives an output that includes parameter names and levels for each term in the model statement. Labelled=yes is the default, except when a design matrix is imported, in which case labelled=yes is not available.
Redirection

>> filename

Specify a file into which the show results are written. If redirection is omitted and the argument is parameters or no argument is given, the results are written to the output window or the console. If the argument is cases, then an output file must be given.

When the argument is cases, the format of the file of case estimates is as follows. In describing the format of the files we use nd to indicate the number of dimensions in the model.

For plausible values (estimates=latent):

If we use np to indicate the number of plausible values, then the format of the plausible value file will be as follows.

It will contain np+3 lines for each case that provided a valid response to at least one of the items analysed.

Line 1 will contain the case number (the sequence of the case in the data file being analysed) in columns 1 through 5.

Line 2 to line np+1 will each contain nd plausible values in the format nd(t13, nd(f6.2)).

Line np+2 will contain nd EAP estimates in the format nd(f10.5, 1x).

Line np+3 will contain nd posterior variance estimates in the format nd(f10.5, 1x).

For expected a-posteriori estimates (estimates=eap):

The file will contain three lines for each case that provided a valid response to at least one of the items analysed.

Line 1 will contain the case number (the sequence of the case in the data file being analysed) in columns 1 through 5.

Line 2 will contain nd EAP estimates in the format nd(f10.5, 1x).

Line 3 will contain nd standard deviations of the posterior distribution estimates in the format nd(f10.5, 1x).

For maximum likelihood estimates (estimates=mle):

The file will contain one line for each case that provided a valid response to at least one of the items analysed. The line will contain the case number (the sequence number of the case in the data file being analysed), the raw score and maximum possible score on each dimension, followed by the maximum likelihood estimate and error variance for each dimension. The format is (i5,nd(2(f10.5, 1x)),nd(2(f10.5, 1x))).

Examples

show;

Produces displays with default settings and writes them to the output window.

show ! estimates=latent >> show.out;

Produces displays and writes them to the file show.out. Representations of the latent distributions are built from plausible values.

show parameters !tables=1:4,estimates=eap;

Produces displays 1 and 4, represents the cases with expected a-posteriori estimates, and writes the results to the output window.

show cases ! estimates=mle >> example.mle;

Produces the file example.mle of case estimates, using maximum likelihood estimation.

show cases ! estimates=latent >> example.pls;

Produces the file example.pls of plausible values.

GUI Access

The various displays are accessed through the items in the Tables menu. Menu access is available for single plots only and uses default options.

Notes

(1) The order in which command statements can be entered into ConQuest is not fixed. There are, however, logical constraints on the ordering. For example, show statements cannot precede the estimate statement, which in turn cannot precede the model, format or datafile statements.

(2) The tables of parameter estimates produced by the show command will display only the first 11 characters of the labels.

(3) The method used to construct the ability distribution is determined by the estimates= option used in the show statement. The latent distribution is constructed by drawing a set of plausible values for the cases and constructing a histogram from the plausible values. Other options for the distribution are EAP and MLE, which result in histograms of expected a-posteriori and maximum likelihood estimates, respectively. Details of these ability estimates are discussed in ‘Latent Estimation and Prediction’ in Chapter 12.

(4) It is possible to recover the ConQuest estimate of the latent ability correlation from the output of a multidimensional analysis by using plausible values. Plausible values can be produced through the use of the show command argument cases in conjunction with the option estimates=latent.

(5) The show statement cannot produce individual tables when an imported design matrix is used.

(6) Neither wle nor mle case estimates can be produced for cases that had no valid responses for any items on one or more dimension. Plausible values are produced for all cases with complete background data.

(7) Table 10 is only available if full standard errors have been estimated.

simulate
(no menu access)

Repeatedly generates data and then estimates parameters for the generated data.

Argument

This command does not have an argument.

Options

option list
A list of comma-separated options. Each option is discussed below.
nitems=n1:n2:…:nd

ni is the number of items on i-th dimension.

npersons=p
p is the number of cases to simulate.

maxscore=k
k is the maximum score for each item. For example, if the items are dichotomous, k should be 1. Note that k applies to all items, so you cannot generate items with different numbers of categories.

itemdist=type
Type is one of four arguments for specifying the distribution of item difficulties: normal((:b), uniform(c:d), or file. Normal((:b) draws item difficulties from a normal distribution with mean (and variance b. Uniform(c:d) draws item difficulties from a uniform distribution with range c to d. File allows you to supply the item difficulties in a file by giving the file name. The file should be a standard text file with one line per item parameter. Each line should indicate, in the order given, the item number, the step number and the item parameter value.

For example, the file might look like:

1 0 -2.0

1 1 0.2

1 2 0.4

2 0 -1.5

..................

Note that the lines with a step number equal to 0 give the item difficulty and that the lines with a step number greater than 0 give the step parameters.

abilitydist=type
Type is one of five arguments for specifying the distribution of the latent abilities: normal((: b), normal2((1: b1: (1: b1: k), uniform(c:d), mvnormal((1: b1: (2: b2: …: (d: bd: r12…r(d-1)(d-1)), or file. Normal((:b) draws abilities from a normal distribution with mean (and variance b. normal2((1:b1:(2:b2:k) draws abilities from a two-level normal distribution. Students are clustered in groups of size k. The within group mean and variance are (1 and b1 respectively, while the between group mean and variance are (2 and b2 respectively. If a two-level distribution is specified the group-level means of the generated values are written to the generated data file for use in subsequent analysis. Uniform(c:d) draws abilities from a uniform distribution with range c to d. mvnormal((1: b1: (2: b2: …: (d: bd: r12:…:r1d:r23:…:r(d-1)(d-1))draws abilities from a d-dimensional multivariate normal distribution. (1 to (d are the means for each of the dimensions, b1 to bd are the variances and r12 to r(d-1)(d-1) are the correlations between the dimensions. For example the a 3-dimensional multivariate distribution with the following mean vector and variance matrix:

[image: image8.wmf]1.000.2

01.00.8

0.20.81.0

-

æö

ç÷

ç÷

ç÷

-

èø

[image: image9.wmf]0.5

1.0

0.0

æö

ç÷

ç÷

ç÷

èø

is specifed as mvnormal(0.5:1:1:1:0:1:0:-0;2:0.8)

File allows you to supply the abilities in a file by giving the file name. The file should be a standard text file with one line per case. Each line should indicate, in the order given, the case number, and the ability value.

For example, the file might look like:

1 -1.00

1 0.23

1 -0.45

2 -1.50

regfile=Filename(v1:v2:v3:…:vn)
Filename is a file from which a set of regression variables can be read. The names of the regression variables are given in parenthesis after the file name, an separated by colons (:) v1:…:vn

The values of the regression variables are written into the generated data file for use in subsequent analysis

The first line of the file must give n regression coefficients. This is followed by one line per person. Each line should indicate, in the given order, the case number and then the value or regression variable v1, then v2, and so on, until vn

For example, the file might look like:

3.0 2.1 –0.5

1 0.230 0.400 -3.000

2 -0.450 0.500 2.000

3 -1.500 3.222 -4.000

method=type
Indicates the type of numerical integration that is to be used. Type can take the value montecarlo or quadrature. The default is quadrature.
nodes=n
Specifies the number of nodes that will be used in the numerical integration. If the quadrature method has been requested, this value is the number of nodes to be used for each dimension. If the Monte Carlo method has been selected, it is the total number of nodes. The default value is 20 per dimension if the method is quadrature and 1000 nodes in total if the method is Monte Carlo.

converge=f
Instructs estimation to terminate when the largest change in any parameter estimate between successive iterations of the EM algorithm is less than f. The default value is 0.001.

iterations=n
Specifies the maximum number of iterations for the EM algorithm. Estimation will terminate when either the iteration criterion or the convergence criterion is met. The default iterations value is 200.

minnode=f
Sets the minimum node value when using the quadrature method. The default is -6.0.

maxnode=f
Sets the maximum node value when using the quadrature method. The default is 6.0.

stderr=type
Specifies how or whether standard errors are to be calculated. Type can take the value full, quick or none. Full causes ConQuest to compute the full error variance-covariance matrix for the model that has been estimated. This method provides the most accurate estimates of the asymptotic error variances that ConQuest can compute. It does, however, take a considerable amount of computing time, even on very fast machines.

fit=reply
Generates fit statistics that will be included in the tables created by the show statement. If reply is no, fit statistics will be omitted from the output.
replications=n
The number of times the analysis is repeated

filename=Fname
This is a final name “root” that is used in the output files. The default value is SIM. The following output files are produced:

Filenamepv.txt: Generated plausible values

Filenamemle.txt: Maximum likelihood estimates

Filenamewle.txt: Weighted likelihood estimates

Filenameeap.txt: Expected a-poteriori values

Filenamesum.txt: Summaries of the estimation

Filenameitn.txt: Export formal file containing traditional item statistics

Filenamepop.txt: Estimates of regression parameters

Filenameite.txt: Item parameter estimates

Filenameitgrepnum.txt: Generating values of item parameters for each replication. This file is only retained if keep=yes.

Filenameablrepnum.txt: Generating values of latent abilities for each replication. This file is only retained if keep=yes.

Filenamedatrepnum.txt: Generated data for each replication. This file is only retained if keep=yes.

keep=reply
Keeps all intermediate files. If reply is no, intermediate files are discarded. The default is no.

condition= v1:v2:v3:…:vn

Uses the listed variables as conditioning variables in estimation. This list can be a subset of the list given in the regfile option and/or it can include the special conditioning variable group. The variable group can only be used in conjunction with abilitydist= normal2((1:b1:(1:b1:k).
Examples

simulate ! nitems=30, npersons=300,
 maxscore=1,itemdist=item1.dat,
 abilitydist=NORMAL(0:1), replications=500;
Data representing the responses of 300 students to 30 dichotomously scored items are generated and estimated 500 times. The generating values of the item difficulty parameters are read from the file item1.dat (and will be the same for each replication), and the latent abilities for each person are randomly drawn from a unit normal distribution with zero mean and a variance of 1. The abilities are redrawn for each replication.

simulate !nitems=20, npersons=500, maxscore=2,
 replications=1000,itemdist=UNIFORM(-2:2),
 abilitydist=NORMAL(0:1.5);
Data representing the responses of f 500 persons to 20 partial credit items with three response categories that are scored 0, 1 and 2 respectively. All of the item parameters were randomly drawn from a uniform distribution with minimum -2 and maximum 2, and the abilities are drawn from a normal distribution with zero mean and a variance of 1.5. The item parameters and abilities are redrawn at each replication

simulate !nitems=10:10, npersons=500, maxscore=2,
 replications=500,itemdist=uniform(-2:2),
 abilitydist=mvnormal(0:1:0:1:-0.5),
 method=montecarlo,nodes=1000;
Data representing the responses of f 500 persons to two sets of 10 partial credit items with three response categories that are scored 0, 1 and 2 respectively. All of the item parameters were randomly drawn from a uniform distribution with minimum -2 and maximum 2. Two abilities are drawn for each case from a bivariate normal distribution with marginal means of zero, variances of one and a correlation of –0.5. The model is estimated with using the Monte Carlo method with 1000 nodes. The item parameters and abilities are redrawn at each replication and 500 replications are run.

simulate !nitems=20, npersons=500, maxscore=2,
 abilitydist=NORMAL2(0:0.7:0:0.3:20),
 itemdist=UNIFORM(-2:2),replications=500;
Data representing the responses of 500 persons to 20 partial credit items with three response categories that are scored 0, 1 and 2 respectively is generated and analysed 500 times. All of the item parameters were randomly drawn from a uniform distribution with minimum -2 and maximum 2, and the abilities are drawn from a two-level normal distribution with within group zero mean and a variance of 0.7 and between group variance of 0.3. The group size is 20.

simulate !nitems=20, npersons=500, maxscore=2,
 abilitydist=NORMAL2(0:0.7:0:0.3:20),
 replications=500,
 itemdist=UNIFORM(-2:2),condition=group;
As for the previous example, with the group mean generating value used as a conditioning variable.

simulate !nitems=30, npersons=300, maxscore=1,
 itemdist=item1.dat, abilitydist=NORMAL(0:1),
 regfile=reg1.dat(gender:ses),filename=TWO,
 condition=gender:ses, replications=1000;
Data representing the responses of 300 students to 30 dichotomously scored items is generated and analysed 1000 times. The generating values of the item difficulty parameters are read from the file item1.dat, and the latent abilities for each person are randomly drawn from the regression model
[image: image3.wmf]12

genderses

qaae

=++

 where
[image: image4.wmf]12

genderses

aa

+

 is computed based upon the information given in reg1.dat and (is randomly generated as a unit normal deviate with zero mean and a variance of 1. New (are generated for each replication. In the estimation gender and ses are used as conditioning variables

simulate !nitems=30, npersons=300, maxscore=1,
 itemdist=item1.dat,
 abilitydist= NORMAL(0:0.7:0:0.3:20),
 regfile=reg1.dat(gender:ses),filename=TWO,
 condition=group:ses, replications=1000;
Data representing the responses of 300 students to 30 dichotomously scored items is generated and analysed 1000 times. The generating values of the item difficulty parameters are read from the file item1.dat, and the latent abilities for each person are randomly drawn from the regression model
[image: image5.wmf]12

genderses

qaae

=++

 where
[image: image6.wmf]12

genderses

aa

+

 is computed based upon the information given in reg1.dat and (is randomly generated to follow a two-level normal model. New (are generated for each replication. In the estimation group and ses are used as conditioning variables. Note that gender was used in the data generation but not as a conditioning variable.

Notes

(1) The simulate command is provided so that users interested in simulation studies can easily create and analyse data sets with known characteristics.

(2) If abilitydist=normal2((1:b1:(1:b1:k) is used then the total number of persons must be divisible by k.

(3) The random number generation in is seeded with a default value of “1”. This default can be changed with the seed option in the set command. Multiple runs of generate within one session use a single random number sequence, so any change to the default seed should be made before the first simulate command is issued.

(4) The generate and simulate command can be used in combination to run simulations that repeatedly use the same generating values for cases and/or items. This is done by first running a generate command and then requesting simulate to read the generate output files.

submit
File(Submit Commands

Executes the ConQuest command statements in the file named in its argument.

Argument

filename

The name of the text file containing the statements.

Examples

submit example1.cmd

Executes the statements in the file example1.cmd.

GUI Access

Select File(Submit Commands

Notes

(5) Submit commands can be nested. That means a file of submitted commands can contain a submit command.

system
(no menu access)

Allows a DOS command to be executed.

Argument

DOS Command

The command to be executed.

Example:

system dir;

Shows the contents of the current working directory

Notes:

(1) In the gui version the results of some operating system commands will be written to a command window that will not stay open after the command has executed.

title
Command(Title

Specifies the title that is to appear at the top of any printed ConQuest output.

Example

title This is a great analysis!;

The words This is a great analysis! will appear on the top of each ConQuest printout from this analysis.

GUI Access

Select Command(Title

Notes

(1) If a title is not provided, the default, ConQuest: Generalised Item Response Modelling Software, will be used.
� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

�PAGE \# "'Page: '#'�'" �Page: 75���wle?

�PAGE \# "'Page: '#'�'" �Page: 1���with the exception of step terms?

16
ConQuest
ConQuest
15

[image: image10.wmf]1.000.2

01.00.8

0.20.81.0

-

æö

ç÷

ç÷

ç÷

-

èø

[image: image11.wmf]0.5

1.0

0.0

æö

ç÷

ç÷

ç÷

èø

_1073913229.unknown

_1122140084.unknown

_1122139963.unknown

_1073913148.unknown

